A Chipyard Comparison of NVDLA and Gemmini

Abraham Gonzalez
abe.gonzalez@berkeley.edu
University of California, Berkeley

ABSTRACT

With the explosion of machine learning being used in everyday life,
machine learning accelerators have undergone significant develop-
ment, becoming more performant and energy efficient. With the
abundance of new accelerators comes the need to measure and com-
pare them against the state-of-the-art on common benchmarks. In
this project, we first integrate the open-source NVIDIA Deep Learn-
ing Accelerator (NVDLA) into Chipyard then compare it against the
open-source Gemmini Systolic Array Generator. We show that the
NVDLA is up to 2.93x faster than a default Gemmini configuration
and up to 3.77x faster on an equivalently sized Gemmini configura-
tion running ResNet-50. By having NVDLA implemented within
Chipyard, we allow further work and analysis comparing Gemmini
and NVDLA while also providing an industry-level accelerator for
others to attach to their own SoC designs.

1 INTRODUCTION

With the rising importance of machine learning in systems like self-
driving cars, drones, and mobile devices, companies and research
teams around the world have introduced accelerators for machine
learning workloads, in particular deep neural networks (DNNs).
These accelerators are incorporated into system-on-chips (SoCs)
and are generally applied to DNN inference operations, which are
computationally intensive with large memory requirements [11].
Two such accelerators are the NVIDIA Deep Learning Accelerator
(NVDLA), open-sourced in 2017, and Berkeley’s Gemmini, which
came later in 2019. They both serve the purpose of accelerating
deep learning workloads, but approach the problem in different
ways. A few of the differences are:

Convolution: Convolutional neural networks are a type of DNN
of particular interest to hardware designers because of their com-
putational intensity and the ability to reduce convolution to matrix
multiplication [15]. NVDLA computes convolutions directly and
uses an adder tree structure for spatial computation [20]. Gemmini
reduces convolutions to matrix multiplication and implements a
systolic array similar to Google’s TPU [14, 17].

SoC integration: Gemmini is integrated into the Rocket Chip en-
vironment using Rocket Chip Coprocessor (RoCC) interface custom
instructions. NVDLA is programmed using MMIO register accesses.
This is discussed further in Section 4.

Architecture: NVDLA is an industry product that consists of sev-
eral different engines and implements a number of performance
optimizations, discussed further in Sections 3 and 5. Gemmini is a re-
search tool and as such, does not implement as many optimizations
as NVDLA.

To measure and quantify these differences, we wanted to inte-
grate NVDLA and Gemmini into an environment where they can
be compared, namely Chipyard. This will also facilitate further
study of NVDLA and deep learning accelerators in future work.
The contributions are as follows:

Charles Hong
charleshong@berkeley.edu
University of California, Berkeley

e Integration of the NVDLA into Chipyard while supporting
its default configurability

e Wrapped FireMarshal workloads to easily build, add, and
run inference tasks

o Preliminary evaluation of NVDLA runtimes on ResNet-50,
AlexNet, and YOLO3

e Comparison of various Gemmini configurations against the
NVDLA accelerator

The remainder of this paper is organized as follows: In Section 2
we discuss the open-source hardware ecosystem and prior integra-
tion work. In Section 3 we give a brief overview of the NVDLA. In
Section 4 we discuss the changes/additions to Chipyard in order to
run the accelerator. In Section 5 we do a preliminary evaluation of
NVDLA and compare it against the Gemmini generator. In Section 6
we discuss future work and conclude in Section 7.

2 BACKGROUND AND RELATED WORK

The NVDLA was first open-sourced in late 2017 with the goal
being to release a usable industry level accelerator that was scalable
and came with a complete package of HW, SW, and verification
material [6]. Since that point, multiple projects have either written
software projects based around it, written networks to target it, and
measured it for autonomous vehicles, and much more [13, 19-21].
Additionally, with the abundance of open-source frameworks using
RISC-V to build SoCs, NVDLA has been a go-to accelerator for
open-source machine learning SoCs. NVDLA has been integrated
into projects like Princeton’s Bring-Your-Own-Core (BYOC) and
Columbia’s ESP Platform [9, 10]. Each of these allows you to add
an NVDLA to the system with a variety of other accelerators or
RISC-V cores.

Before integration into the BYOC and ESP Platforms, NVDLA
was integrated into the FireSim project, a FPGA-accelerated cycle-
accurate hardware simulation platform [12, 18]. This involved writ-
ing a NVDLA wrapper in Chisel3 to blackbox the RTL, but also
required extensive modifications to the FireSim backend so that
external Verilog could be clock-gated. While this clock-gating work
was eventually used in further FireSim projects and was main-
streamed [16], the main integration work for NVDLA was left
alone. Recently the Chipyard framework was introduced, support-
ing a wide variety of open-source cores, accelerators, and tooling
IP (including FireSim) making integrating NVDLA into it a logical
next step [8]. Additionally, Chipyard has its own machine learning
accelerator, Gemmini, targetting IoT workloads making it an ideal
comparison to the NVDLA [14].

3 NVDLA OVERVIEW

NVDLA consists of several engines as shown in Figure 1. They
target the four main operations that make up deep learning infer-
ence [3]:

Headless NVDLA core

Configuration interface block

CSB [/ interrupt
interface
I -{ Convolution buffer » Convolution core
v
-« » Activation engine (SDP)
DBB nterface x
- » Pooling engine (PDP)
Memory
interface block *
«———————» Local resp. norm (CDP)
B B ——e—
Second DBB ™
interface {optional)
- » Reshape (RUBIK)
- > Bridge DMA

Figure 1: NVDLA Block Diagram [2]

e Convolution: The convolution engine has its own on-chip
SRAM (the convolution buffer) and can be parameterized for
four different methods of doing convolution - direct, image-
input, Winograd, and batching convolution.

o Activation: The single data point processor (SDP) applies
linear or non-linear activation functions to individual data
points

e Pooling: The planar data processor (PDP) handles pooling.

e Normalization: The multi-planar data processor (CDP) is
built specifically to apply the local response normalization
function [21].

In addition to these four engines, NVDLA provides a data reshape
engine and a bridge DMA engine for accelerating data movement
between system DRAM and on-chip buffers. Most of these six units
have “ping-pong” register groups, meaning the next operation can
be programmed on one group of registers in an engine while it
is operating on a second group of registers that has already been
programmed [20]. This hides the CPU’s reprogramming latency. Ad-
ditionally, large number of NVDLA parameters can be configured,
including but not limited to number of MAC units, convolution
buffer size, the presence of a second memory bus for enhanced
bandwidth bandwidth to DRAM, and precision. A full list of config-
urable parameters is available in the NVDLA Primer [3]. There are
two example configurations included in the open-source hardware
repository, called nv_small and nv_large. Table 1 shows the main
differences between the two configurations.

NVIDIA also provides several software tools in its open-sourcing
of NVDLA. First, the software stack contains a compiler for Caffe
models. The compiler generates a platform-agnostic loadable from a
Caffe model. Next is a runtime environment, consisting of the User
Mode Driver (UMD) and (KMD). The UMD takes in an inference job
in loadable format and binds input/output tensors to memory loca-
tions. It then submits a task to the KMD, which executes the task by
scheduling engine operations and receiving completion interrupts

from the engines. The KMD’s execution can be summarized by the
following events [4]:

Program: program one register group for an operation.

Enable: set engine register group as “ready-to-run”. doesn’t mean
operation will run immediately.

Complete: operation on an engine completed and register group
is freed.

Finally, NVIDIA provides a virtual platform for simulating NVDLA
within an SoC. This tool is meant to accelerate user software devel-
opment for NVDLA.

4 CHIPYARD INTEGRATION

Large additions into Chipyard consist of correctly connecting the
peripheral to the multi-bus hierarchy, properly blackboxing external
Verilog, adding software tests, and building FPGA images for testing.
Connecting to the multi-bus hierarchy was done in a similar fashion
to prior work done in [12]. However, additional work was done to
blackbox the external Verilog properly for FireSim emulation and
wrap the software stack into the FireMarshal workload management
tool for ease of use [7].

4.1 Hardware Modifications

Rocket/BOOM Tile

NVDLA
Core PTW
! T !

Small/Large
L1l L1D r —l

To Memory System Interrupt Line

+ :
| | |

¥ FrontBus InterruptBus
' :
SystemBus |
H ' i
PeripheryBus
o | | 2o | [PEeRe |
3 : To Configuration Bus
| MemoryBus |

|

TL Port to AXI Mem

Figure 2: NVDLA Integration into Chipyard

Building off of prior work done in [12], the NVDLA was wrapped
and connected to the FrontBus, InterruptBus, and PeripheryBus as
shown in Figure 2. To program the NVDLA, a TileLink transaction is
sent from the control core (i.e. Rocket or BOOM) over the SystemBus
and PeripheryBus into the NVDLA wrapper module. The main
NVDLA DBB interface is connected to the FrontBus where memory
transactions can eventually go through the memory hierarchy (in
the default case, through the shared-L2 into DRAM). The NVDLA
interrupt port (used to signal operation completion) connects to the
InterruptBus. While these are the default bus connections, these
can be modified to obtain higher performance at the cost of larger
crossbars. For example, the DBB interface can instead connect to

Configuration nv_small nv_large
of MACs 64 1024
Precision INTS8 FP16/INT16/INT8
Conv. Buffer Size 128KB 512KB
Second Mem. Bus No Yes
Winograd Conv. Support No Yes
Engine Throughput (# of Pipelines) 1 4
Activation Function Estimation Scaling Scaling+LUT
Reshape Support No Yes
Bridge DMA Support No Yes

Table 1: NVDLA Small and Large Configurations [2]

the SystemBus, so that NVDLA can have a faster connection to the
memory hierarchy at the cost of a larger SystemBus crossbar.

P —
NVDLA Verilog Module | |
| |
| |
DBB2 } —| T Extra SRAM I
| |
| |
NVDLA Top e —— |
CSB APB—CSB
DBB Interrupt A
!
y To
AXI-TL InterruptBus TL—APB
T)
To Memo;y System From PeripheryBus
1

Figure 3: NVDLA Wrapper

All these bus connections are connected to the NVDLA wrapper
module written in Chisel3. This module properly wraps the external
Verilog into a single clock blackboxed module that can be passed
through the FireSim flow. This wrapper module also converts the
TileLink transactions into APB transactions then into NVDLA CSB
transactions used to program the accelerator and converts the AXI
memory transactions into TileLink memory transactions. Finally, if
using the Large NVDLA RTL, an extra SRAM can be connected to
the second DBB interface. Instead of connecting to the bus hierarchy,
this SRAM is local to the NVDLA wrapper module and is only
accessible by the NVDLA. Figure 3 shows the NVDLA wrapper
with the different module splits, converters, and optional SRAM.

After determining where the NVDLA was located in the Chip-
yard system and what the module hierarchy was, significant work
was done to update the NVDLA to the mainstream NVDLA reposi-
tory. Since the original NVDLA wrapper repository that [12] used
was based on an older NVDLA and Rocket Chip, both the external
RTL and the Chisel wrapping it needed to be updated. This included

regenerating the new RTL for Small and Large NVDLA, cleaning
up unneeded files, solving lint issues, bumping to Chisel3, and up-
dating the DTS. Of these updates, regenerating the RTL for NVDLA
proved to be the most troublesome. While the Verilog for NVDLA
was lint clean, unneeded dirty Verilog files were also emitted by the
NVDLA generator. This in combination with not knowing which
files were needed to build the design led to extensive time used
trying to solve lint problems that were unnecessary since the files
were not needed in the end. Another smaller integration problem
that occurred was trying to deal with include directives in the ex-
ternal Verilog. Since the blackbox integration flow for Chipyard
doesn’t support include directives, a new pre-processing script was
created to replace include directives with its respective Verilog file.
This was more amenable than running the Verilator pre-processor
to replace the files since the Verilator pre-processor ends up remov-
ing extra comments which might contain useful pragmas or other
constructs [1].

4.2 Software Modifications

The NVDLA software stack consists of a user mode driver (UMD)
and a kernel mode driver (KMD). Each had to be updated to build
with the RISC-V toolchain and the newer FireSim Linux kernel.

The KMD was based off an older version of the Linux kernel
which required updates for the 5.3 kernel. Unlike prior work, the
KMD was separated out of the kernel into a out-of-tree module
that would be loaded on boot. This was done by using FireMarshal,
Chipyard’s software management platform, to build the KMD af-
ter the kernel binary as built. This required adding a new feature
to FireMarshal so that you could execute a script after the binary
was created. Additionally, to get the KMD to build, extra Linux
kconfiguration flags were added to add DMA shared buffers as well
as GEM CMA helpers to the Linux build. This required bugfixes
to FireMarshal to properly inherit kconfiguration flags properly.
The UMD was in a similar situation to the KMD. First, the prebuilt
binaries were out-of-date with the FireSim kernel. In order to re-
build the binaries, external dependencies (specifically libjpeg.a) also
needed to be rebuilt. This proved to be tricky because there is no
documentation on what version of the external dependencies are
used and the most up-to-date version wouldn’t work. After finding
the correct version of the library, the UMD was built properly.

By using the FireMarshal utility, both the KMD and UMD are
added automatically to the workload/test. This is demonstrated

Machine Setup Workload Inference Cycle Time
4x Rocket + Small NVDLA + L2 + LLC ResNet-50 1,371,152,204
AlexNet 2,003,149
4x Rocket + Large NVDLA + L2 + LLC ResNet-50 1,433,350,701
AlexNet 1,769,364
AlexNet (w. random weights) 1,781,644
YOLO3 20,844,294

Table 2: Overall NVDLA Inference Runtime Results

by adding all the prebuilt NVDLA regressions into the software
repository as well as a ResNet-50 test. By using the FireMarshal
workloads, users can easily get a working Linux configuration and
run something on the NVDLA with minimal to no effort other than
to compile the loadable needed.

5 EVALUATION

Evaluation for the project is split into two parts. We first evalu-
ate both the Small and Large configurations of NVDLA running
AlexNet, YOLO3, and ResNet-50. We analyze the overall runtime as
well as breakdown the individual engine runtimes and stalls. Then,
we compare the NVDLA to two main Gemmini configurations, one
matching the NVDLA Small configuration and the default Gemmini
configuration.

5.1 NVDLA Evaluation

NVDLA evaluation occurred with both the default Small and Large
configurations that came from the NVDLA hardware repository
using FireSim. Both simulations included Quad-core Rockets, 512KB
of L2, and a 4MB simulated LLC. In addition to running the default
regression loadables, we compiled ResNet-50 and used YOLO3 from
prior work in [12]. Table 2 shows the overall inference runtime
results for the different workloads. You can see that ResNet-50
takes a significant amount of time on either Large or Small NVDLA
compared to any other workload. This is because ResNet-50 runs
a softmax on the network output that is emulated on the host
CPU instead of in a NVDLA engine. Additionally, you can see
variation between the two AlexNet versions that are run on the
Large configuration. This seems to be noise in the measurements
(maybe due to using invasive measurements with printf statements).
Here YOLO3 was pre-compiled into three sub-graphs then run
simultaneously on the NVDLA. It runtime was measured by totaling
the amount of cycles for each sub-graph.

For the rest of the NVDLA evaluation, we use ResNet-50 on the
Small NVDLA configuration to look deeper into the results. Figure 4,
shows the enable to completion time of the first few operations
of running the inference. You can see that the SDP operation is
enabled before its corresponding CONV operation (i.e. CONVO0
and SDP1) because the CONV data is streamed to the SDP before
written back to memory. Additionally, you can see the overlap
between pairs of operations on the same engine (i.e. CONVO0 and
CONV2). This highlights the register group ping-pong strategy
where you can program and enable an operation while another
previous operation is resident on the engine. While programming
latency is small (on the order of 10K to 30K cycles), this ping-pong

strategy hides programming latency when multiple operations are
occurring in a row on the same engine. Unfortunately, NVDLA only
provides a mechanism to measure from enable to completion for
each operation. Thus determining a single operation running on a
engine isn’t possible, you are only able to get the aggregate with
significant post-processing to ignore overlapping cycles.

Cycle Count
2.052E+09

2.05E+09 2.051E+09 2.053E+09
CONVO
SDP1]
CONV2
SOP3 [
CONV4
SDP5 []
|

CONVe

Operation

SDP7

POPS EE——
CONV9
sDP10 —

CONV11
sDP12 |

Figure 4: Starting Timeline from ResNet-50 on Small
NVDLA

Table 3 shows the individual cycle runtimes for each of the
execution engines running ResNet-50. As expected, SDP and CONV
are the two main engines that take up the majority of the runtime.
Here the SDP runtime encompasses CONV because SDP is enabled
before and CONV streams its results into it. When compared to
the overall runtime including calculating the softmax, both CONV
and SDP only take up 9.2% and 11.7% respectively. Pooling takes a
minimal amount of the total combined execution time at around 1%
and total inference time at less than 1%. This data shows that the
main bottleneck of running ResNet-50 on NVDLA is running the
softmax operation on the CPU which could get a sizeable speedup
if there was a dedicated engine for it.

In addition to overall engine runtimes, NVDLA also provides
performance counters for measuring stalls and read latencies for
various operations. As shown in Table 4, a significant amount of
time is spent reading out data and weight data from the convolu-
tional buffer. Specifically, the weight read operation stalls for up
to 30.57% of the CONV engine runtime. This makes sense since
NVDLA is a WS dataflow accelerator and requires stalls on reading
weight data. When writing back data, the SDP engine exhibits a

Engine Total Engine Cycles | % of Combined Engine Time | % of Overall Inference Time
CONV (Convolution Engine) 126,193,914 77.93% 9.20%
SDP (Activation Engine) 160,446,024 99.08% 11.70%
PDP (Pooling Engine) 1,440,188 0.89% 0.11%

Table 3: Small NVDLA Engine Runtime Results for ResNet-50

Engine Performance Measurement | Cycle Count | % of Engine Runtime
CONYV (Convolution Engine) Data Read Stall 6,312,655 5.00%
Weight Read Stall 38,571,509 30.57%
Data Read Latency 6,438,142 5.10%
Weight Read Latency 0 0%
SDP (Activation Engine) Wirite Stall 1,564,106 0.97%
PDP (Pooling Engine) Write Stall 0 0%

Table 4: Small NVDLA Engine Statistics

minimal amount of stalling up to 1%. The main outlier in the per-
formance counter data is the Weight Read Latency for the CONV
engine. While there is no documentation on what the counters
exactly mean, it is implied that the read latency should encompass
the stall cycles. However, this data shows that there was 0 cycles of
latency for reading weight data.

5.2 NVDLA vs Gemmini

To compare NVDLA and Gemmini, we continued targeting the
Small NVDLA configuration. In order to isolate only the key dif-
ferences between the two accelerators, we gathered data using a
configuration of Gemmini that was as close as possible to NVDLA’s
Small configuration in computational and memory capacity. This
"Small" configuration of Gemmini includes an equal number of
MAC:s, the same precision, and as close as possible scratchpad and
accumulator sizes. As a baseline, we also measured the performance
of the default configuration of Gemmini. Table 5 shows the exact
parameters that were used for the comparison. We ran a ResNet-50
inference on each of these configurations in FireSim. A summary
of the results can be seen in Table 6 and in Figure 5. In total, for
ResNet-50 we see that Gemmini Small takes 3.77x longer than
NVDLA Small to run the same inference job. Gemmini’s default
configuration takes 2.93x as long. Much of this slowdown can be
attributed to Gemmini requiring im2col to run on the CPU before
matrix multiplication can occur. Im2col made up 46% of Gemmini
Small’s runtime. NVDLA can directly apply convolution to the
image input, and therefore does not need to complete an im2col
operation [2]. Even without im2col, however, Gemmini Small takes
2.02x as many cycles as NVDLA. This includes the NVDLA’s addi-
tional softmax CPU computation, which takes up a large portion
of NVDLA’s ResNet-50 runtime. When counting just the matrix
multiplication and activation function computation cycles, NVDLA
Small is 8.74x and 1.48x faster than the small and and default config-
urations of Gemmini respectively. We are uncertain why Gemmini
took a significantly different amount of time to compute im2col
for the small and default configurations, but didn’t investigate this
further as our focus in the time we had was NVDLA.

109\ | |

- 0 NVDLA Small
[l 0 Gemmini "Small"
[l 0 Gemmini Default

Cycle Count

T T T T
Total (with Total (no MatMul Pooling
im2col) im2col) + ReLU

Figure 5: NVDLA vs Gemmini Cycle Count Breakdown

One important difference between the two accelerators is that
NVDLA does has a dedicated pooling engine, whereas Gemmini
does pooling on the CPU. Because of this, we wanted to isolate the
convolution performance of each accelerator as much as possible,
as this is the core component of DNN computation. To do this, we
looked at the number of cycles until the first pooling layer. This is
essentially the runtime of the first convolutional layer of the DNN.
Here, even ignoring im2col, Gemmini takes 65.43x as many cycles
to complete the convolutional layer as shown in Table 7. This shows
that the disparity between accelerators is not only from having to
compute operations like pooling on the CPU. Gemmini also has
room for improvement in convolution, the core computation that
it accelerates. The default configuration of Gemmini, which has
4 times as many MACs and twice the scratchpad and accumula-
tor size of NVDLA Small, is still up to 13.29x slower on the first
convolutional layer.

NVDLA Small | "Small" Gemmini | Default Gemmini

MAC Architecture Adder Tree Systolic Array Systolic Array

of MACs 64 64 256
Scratchpad Banks 32 32 4

Scratchpad Size 128KB 128KB 256KB

Accumulator Size 36KB 32KB 64KB

Precision INT8 INT8 INTS8

Dataflow WS WS+0S WS+0S

Table 5: NVDLA vs Gemmini Parameters

NVDLA Small

"Small" Gemmini | Default Gemmini

Total Cycles (including im2col)

1,371,152,204

5,173,149,486 4,021,416,734

Total Cycles (no im2col) 1,371,152,204 2,769,679,988 551,932,110
MatMul + ReLU Cycles 160,446,024 1,402,658,021 237,572,748
Pooling Cycles 1,440,188 312,270,532 305,640,427

Table 6: NVDLA vs Gemmini Cycle Count Breakdown

NVDLA Small | "Small" Gemmini | Default Gemmini
Cycles until 1st Pooling Layer (including im2col) 786,916 239,312,881 198,360,887
Cycles until 1st Pooling Layer (no im2col) 786,916 51,489,687 10,457,630

Table 7: NVDLA vs Gemmini Single Layer Cycle Count

We believe a combination of factors contribute to this large per-
formance gap. First, Gemmini doesn’t take advantage of having a
large number of scratchpad banks [14]. Although the documenta-
tion on it is limited, we hypothesize that NVDLA is able to have
greater memory bandwidth through a large number of scratch-
pad banks, since by default is has 32 and 64 banks for the Small
and Large configurations respectively. NVDLA also has a double-
buffered accumulator, which further reduces memory bottlenecks
by allowing accumulated sums to be both stored to by the convolu-
tion MACs and read from by the SDP [5]. NVDLA also implements
optimizations such as ping-pong register groups, which reduce the
latency between consecutive operations, and weight compression
to further reduce memory usage.

6 FUTURE WORK

In the future, testing with more configurations of both NVDLA
and Gemmini could help expose the sources of differentiation be-
tween the two accelerators. Currently, we compare NVDLA Small
to only two different Gemmini configurations, making it difficult to
identify how much each optimization in NVDLA contributes to its
performance advantage over Gemmini. We could toggle each per-
formance optimization on and off to identify the most advantageous
optimizations for Gemmini to implement in future work.

There are also improvements that can be made to the current
measurement setup. For example, we could take more accurate mea-
surements of task completion time. Currently, we measure the time
a task takes from enable to completion, which can block on the com-
pletion of another, prior task. So, it is difficult to accurately measure
how much each individual task contributes to the overall runtime
of an inference job. In the future, measuring cycle counts with less

invasive techniques, for example out-of-band profiling, may pro-
vide slightly more accurate data than the current results, which
were measured using printf statements in the NVDLA firmware. If
more precise performance counters were added to NVDLA, it could
help solve this challenge.

This is among a number of potential changes to NVDLA that
would enhance our evaluation. In our exploration of NVDLA soft-
ware, we found that pre-built workloads provided in the software
stack are not synced to the latest release of NVDLA hardware. This
makes it impossible to run these simple workloads and compare
them to Gemmini on the current NVDLA hardware. For example,
one measurement that would help quantify the differences between
the two accelerators in more detail would be a simple GEMM. Such
benchmarks already exist for Gemmini. However, we were unable
to measure the performance of a single GEMM on NVDLA because
we were only able to build functioning NVDLA loadable inputs
from Caffe models. Users would also benefit from NVIDIA provid-
ing compiler support for more recent machine learning frameworks
such as PyTorch and TensorFlow, which would allow NVDLA to
run on a larger number of models available to the public.

7 CONCLUSION

The NVIDIA Deep Learning Accelerator (NVDLA) is an open-source
highly performance deep learning accelerator that can now be used
with the Chipyard framework ! to create customized machine learn-
ing SoCs. When compared to the Gemmini systolic array generator,

The work can be viewed at https://github.com/ucb-bar/chipyard on the developer
branch.

https://github.com/ucb-bar/chipyard

it is up to 3.77x faster running ResNet-50 on an equivalent configu-
ration using the same system setup. Combined with documentation
on how to use the NVDLA software stack, this integration enables
future Chipyard users and machine learning accelerator develop-
ers to add NVDLA to their projects to compare their accelerator
implementation with an industry proven commercial accelerator.

REFERENCES

[1

]

2006. Verilator. https://www.veripool.org/wiki/verilator.

2017. NVDLA Hardware Architectural Specification. http://nvdla.org/hw/v1/
hwarch.html.

2017. NVDLA Primer. http://nvdla.org/primer.html.

2017. NVDLA Software Manual. http://nvdla.org/sw/contents.html.

2017. NVDLA Unit Description. http://nvdla.org/hw/v1/ias/unit_description.
html.

2017. NVIDIA Deep Learning Accelerator (NVDLA). https://nvdla.org/.

2019. FireMarshal: Workload Generation Tool for RISC-V Systems. https://
firemarshal.readthedocs.io/en/latest/.

2020. Chipyard. https://chipyard.readthedocs.io/.

2020. ESP: An Open-Source Platform for Interdisciplinary Research on SoC
Design and Programming. In ASPLOS: Architecture Support for Programming
Languages and Operating Systems (ASPLOS 2020).

[10] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory Chirkov, Ang

[11

[12

]

Li, Alexey Lavrov, Tri M Nguyen, Yaosheng Fu, Florian Zaruba, et al. 2020. BYOC:
A" Bring Your Own Core" Framework for Heterogeneous-ISA Research. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. 699-714.

Mingyu Gao et al. 2017. Tetris: Scalable and efficient neural network acceleration
with 3D memory. OSR 51, 2 (2017), 751-764.

Farzad Farshchi, Qijing Huang, and Heechul Yun. 2019. Integrating nvidia
deep learning accelerator (nvdla) with risc-v soc on firesim. arXiv preprint

[13

[14

[15

[17

(18

[19

[20

[21

]

arXiv:1903.06495 (2019).

S. Feng, J. Wu, S. Zhou, and R. Li. 2019. The Implementation of LeNet-5 with
NVDLA on RISC-V SoC. In 2019 IEEE 10th International Conference on Software
Engineering and Service Science (ICSESS). 39-42.

Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao, John
Wright, Colin Schmidt, Jerry Zhao, Albert Ou, Max Banister, et al. 2019. Gemmini:
An Agile Systolic Array Generator Enabling Systematic Evaluations of Deep-
Learning Architectures. arXiv preprint arXiv:1911.09925 (2019).

Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj Kalamkar,
Greg Henry, Hans Pabst, and Alexander Heinecke. 2018. Anatomy Of High-
Performance Deep Learning Convolutions On SIMD Architectures. (2018).
Qijing Huang, Christopher Yarp, Sagar Karandikar, Nathan Pemberton, Ben-
jamin Brock, Liang Ma, Guohao Dai, Robert Quitt, Krste Asanovic, and
John Wawrzynek. 2019. Centrifuge: Evaluating full-system HLS-generated
heterogenous-accelerator SoCs using FPGA-Acceleration. In 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE, 1-8.
Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, et al. 2017. In-
datacenter performance analysis of a tensor processing unit. In 44th Annual
International Symposium on Computer Architecture (ISCA ’17). ACM, 1-12.
Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
et al. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system simulation
in the public cloud. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 29-42.

Wei-Fen Lin, Cheng-Tao Hsieh, and Cheng-Yi Chou. 2019. ONNC-based Software
Development Platform for Configurable NVDLA Designs. In 2019 International
Symposium on VLSI Design, Automation and Test (VLSI-DAT). IEEE, 1-2.
Shenbagaraman Ramakrishnan. 2020. Implementation of a Deep Learning Infer-
ence Accelerator on the FPGA. (2020).

G. Zhou, J. Zhou, and H. Lin. 2018. Research on NVIDIA Deep Learning Acceler-
ator. In 2018 12th IEEE International Conference on Anti-counterfeiting, Security,
and Identification (ASID). 192-195.

https://www.veripool.org/wiki/verilator
http://nvdla.org/hw/v1/hwarch.html
http://nvdla.org/hw/v1/hwarch.html
http://nvdla.org/primer.html
http://nvdla.org/sw/contents.html
http://nvdla.org/hw/v1/ias/unit_description.html
http://nvdla.org/hw/v1/ias/unit_description.html
https://nvdla.org/
https://firemarshal.readthedocs.io/en/latest/
https://firemarshal.readthedocs.io/en/latest/
https://chipyard.readthedocs.io/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 NVDLA Overview
	4 Chipyard Integration
	4.1 Hardware Modifications
	4.2 Software Modifications

	5 Evaluation
	5.1 NVDLA Evaluation
	5.2 NVDLA vs Gemmini

	6 Future Work
	7 Conclusion
	References

