
Predicting Performance of Deep Neural Network Schedules
Across Accelerator Designs
Charles Hong (Advisor: Yakun Sophia Shao)

charleshong@berkeley.edu
University of California, Berkeley

1 INTRODUCTION
Specialized deep neural network (DNN) accelerators, such as Google’s
Tensor Processing Unit (TPU), are becoming more and more com-
mon. In order to use these accelerators, compilers must schedule
nested loop workloads, such as convolutional neural network lay-
ers, by defining their ordering, tiling, and spatial mapping. These
schedules are often not optimal [2].

By accurately modeling performance and energy usage across
different DNN layers and accelerator architectures, we canmore pre-
cisely predict DNN performance on hardware configurations that
have not yet been deployed. This would allow for rapid software-
hardware co-design of machine learning compilers and DNN ac-
celerators, bypassing long simulation times that are often a barrier
to optimal hardware design [6]. In addition, such a model could
allow for co-scheduling of DNN layers on a partitioned accelerator,
providing an additional level of parallelism to spatial accelerators
like the TPU. The goal of this work is to understand whether it
is possible to build such a generalizable model while maintaining
interpretability, as this can help inform future design choices.

2 BACKGROUND AND RELATEDWORK
This project builds on CoSA (Constrained Optimization for Spatial
Accelerators) [2], which focuses on identifying an optimization
strategy for DNN layer scheduling on the Simba accelerator [5].
CoSA uses mixed integer programming techniques to solve for the
optimal performance and energy given resource constraints. To
evaluate a schedule, CoSA integrates Timeloop [4], which provides
microarchitecture- and technology-specific energymodels that help
estimate performance and energy of the accelerator.

We also address limitations of other prior work. One such work
is A Learned Performance Model for Tensor Processing Units [3],
which focuses on building an end-to-end performance model for a
neural network, targeted specifically to the TPU. A similar work is
Mind Mappings [1], which couples neural network-based perfor-
mance models with gradient-based search to perform DNN layer
schedule search. These works motivate our work by indicating that
a surrogate machine-learning based model for neural network per-
formance prediction can provide enough accuracy to inform neural
network scheduling on accelerators. In contrast to these two works,
our performance model seeks to predict parallel performance on
arbitrary accelerator configurations, with the goal of enabling faster
hardware-software codesign. We also present new insights on what
types of models can be used.

A third state-of-the-art work is Apollo [6], which explores the
use of various iterative optimization techniques to optimize accel-
erator architecture. We build upon works like Apollo by taking into
account DNN layer scheduling in addition to hardware parameters.

3 OUR APPROACH

Figure 1: Summary of the approach taken.

A significant portion of this project’s contribution is in building
infrastructure that allows the fast evaluation of different machine
learning models on different accelerator designs and neural net-
work layer schedules. In order to model DNN layer performance
on varying hardware, we generate a wide range of accelerator
descriptions that can be passed to Timeloop. Parameters include
number of parallel processing elements (PEs), as well as the size of
on-chip memory, divided amongst the accumulation weight, input,
and global buffers. We also use the nested loop representation of
a convolutional neural network layer to randomize the following
schedule attributes:

• Loop permutation, the order of the dimensions in the com-
putational loop nest can be permuted depending on the spe-
cific problem dimensions.

• Memory mapping, how much of each problem dimension
should be mapped to each memory level. This determines
buffer usage.

• Spatial mapping, how much parallel computation is allot-
ted to a dimension. This determines parallel spatial resource
utilization.

We sample schedules across different accelerator configurations to
build a machine learning model that will take into account both
hardware and software features. So far, around 6 million schedules
have been generated.

4 KEY RESULTS AND CONTRIBUTIONS
In this project, we evaluate three main machine learning models on
the task of predicting deep neural network layer runtime on new,
unseen schedules across different accelerator configurations. After
a thorough data analysis, we find that surprisingly, when combined
with a compressed, analytically preprocessed feature set, the most



Figure 2: Schedule comparison accuracy for the three model
types, trained on 3000 schedules/layer on 5 different accel-
erators.

Figure 3: Random forest feature importance of the original
132 input features, using the MDI method.

Figure 4: Random forest feature importance of the com-
pressed set of 36 input features, using the MDI method.

accurate of the three models is the random forest. This compressed
feature set both increases accuracy and decreases training time of
the random forest model. We also show the usefulness of Mean De-
crease in Impurity (MDI) feature importance analysis with random
forest models, utilizing the method to identify the most predictive

Table 1: Models used

Model type Interpretability Training time

Linear regression High Low
Random forest Medium High
Multi-layer perceptron Low High

input features. Finally, we show that a random forest model has
high potential to predict layer runtime on unseen accelerator de-
signs, and that statistical methods can be used to avoid schedules
that break hardware constraints.

5 FUTUREWORK
There are many potential avenues for extending this project. The
analysis presented is meant to serve as a building block towards
future exploration of hardware-software co-optimization for deep
neural network accelerators. Further analysis of the models them-
selves could provide new insights into the importance of specific
accelerator or schedule parameters. With further tuning, the mod-
els could be part of generative or reinforcement learning-based
methods for generating new accelerator designs or more optimally
parallel schedules.

REFERENCES
[1] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar,

and Christopher W. Fletcher. 2021. Mind Mappings: Enabling Efficient Algorithm-
Accelerator Mapping Space Search. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[2] Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind Kalaiah, James
Demmel, John Wawrzynek, and Yakun Sophia Shao. 2021. CoSA: Scheduling by
Constrained Optimization for Spatial Accelerators. In International Symposium on
Computer Architecture (ISCA ’21).

[3] Samuel J. Kaufman, Phitchaya Mangpo Phothilimthana, Yanqi Zhou, Charith
Mendis, et al. 2021. A Learned Performance Model for Tensor Processing Units. In
Proceedings of the 4th MLSys Conference.

[4] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, et al.
2019. Timeloop: A Systematic Approach to DNN Accelerator Evaluation. In IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS).
304–315.

[5] Yakun Sophia Shao, Jason Cemons, Rangharajan Venkatesan, Brian Zimmer, et al.
2019. Simba: Scaling Deep-Learning Inference with Chiplet-Based Architecture.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture.

[6] Amir Yazdanbakhsh, Christof Angermueller, Berkin Akin, Yanqi Zhou, et al. 2020.
Apollo: Transferable Architecture Exploration. In ML for Systems Workshop at
NeurIPS 2020.


	1 Introduction
	2 Background and Related Work
	3 Our Approach
	4 Key Results and Contributions
	5 Future Work
	References

