
Transformers in Reinforcement Learning for Hardware Design Space
Exploration

Junsun Choi Charles Hong
Electrical Engineering and Computer Science, University of California, Berkeley

Abstract

As domain-specific accelerators have become more
commonplace, efficient design space exploration
(DSE) in hardware designs has become a crucial
problem. The problem in hardware design space ex-
ploration is that it takes a significant amount of time
per one design iteration. To deal with this prob-
lem, a DSE algorithm should find a near-optimal
hardware design in as few invocations of the expen-
sive hardware simulator as possible. In cases where
the algorithm uses a performance model in order
to do so, the model should be as accurate as pos-
sible. We propose a novel approach where we re-
place the RNN policy network with a transformer in
the reinforcement learning (RL)-based deep learn-
ing accelerator optimizer, ConfuciuX. We also per-
form a thorough hyperparameter search to identify
optimal model parameters. We show that our so-
lution, ConfuciuX-TF, improves searched hardware
performance by 12.1%, while reducing runtime by
27% compared to the original solution.

1 Introduction

With the end of Moore’s Law and Dennard Scaling,
the performance improvement of general purpose
processors has slowed down. Nowadays, the gen-
eral consensus is that developing Domain-Specific
Accelerators (DSAs) is necessary to continue the
rapid trend of pre-Moore performance gains. How-
ever, the rise of DSAs has resulted in increased non-
recurring engineering (NRE) cost to develop hard-
ware. Therefore, efficient design space exploration
(DSE) in hardware designs is a crucial problem.

The problem in hardware design space explo-
ration is that it takes a significant amount of time to
run a simulator to test one hardware design config-
uration, and even more time to do post-silicon veri-
fication. However, modifications in hardware archi-
tectural design can yield many-fold improvements
under target metrics such as power, performance,
and chip area (PPA). Considering the fact that the
time given for product launch is usually limited, it is
infeasible to exhaustively search the design space of
hardware configurations. And while human experts
can attempt the use of various heuristics to find an
optimal design point, there is no guarantee that it
is the optimal point. In fact, prior work has shown
the effectiveness of machine learning algorithms in
improving the efficacy of hardware architectural de-
sign choices versus human choices [11].

To deal with the problem mentioned above, a
DSE algorithm should find a near-optimal hardware
design in as few invocations of the expensive hard-
ware simulator as possible. In case where the algo-
rithm uses a performance model in order to do so,
the model should be as accurate as possible. Various
machine learning models have been applied to this
end, such as variational autoencoders [7]. Another
system, ConfuciuX [13], uses reinforcement learn-
ing to optimize deep learning accelerator parame-
ters for a set of layers. We propose ConfuciuX-TF,
a modified solution that seeks to improve both agent
performance and runtime.

The ConfuciuX-TF source code can be found on
GitHub at https://github.com/charleshong
3/cs285-proj.



2 Background and Motivation

2.1 Deep Learning Accelerators

Figure 1: TPU v1 block diagram, from [12]. As de-
scribed in 2.1, the yellow grid represent the 2D array
of multiply-accumulate units, and the blue blocks
represent the on-chip buffers that store data locally
for faster access.

As previously mentioned, domain specific ac-
celerators, particularly those targeted towards deep
learning workloads, have become highly popular.
The most well-known among these deep learning
accelerators is Google’s Tensor Processing Unit
(TPU), which John Hennessy and David Patterson
described as ushering a renaissance of computer ar-
chitecture in their 2017 Turing Award lecture [6].
Since cost-, area-, and power-efficiency are the main
advantages of hardware acceleration, these accel-
erators must be carefully designed to achieve op-
timality on one or more of these metrics. The
basic deep learning accelerator design, which has
not deviated significantly from that of the TPU v1
and its contemporaries, consists of a number of
multiply-accumulate units laid out in a 2D array (as
in the TPU [12]) or in a SIMD vector layout (as
in NVIDIA’s NVDLA), along with static random-
access memory (SRAM) units. The multiply-
accumulate units compute hundreds, or even thou-
sands, of the arithmetic operations that make up a
matrix multiplication in one cycle. The SRAMs
serve as buffers that locally store the weight, input,
and output tensors which would otherwise have to
be fetched from DRAM in a high-latency operation,

allowing the plentiful arithmetic units to be utilized
a higher percentage of the time. Modern neural net-
works can reach into the billions of parameters in
size, as shown in Figure 2, so these SRAMs can-
not possibly be made large enough to store all data
needed for even one layer at a time. The sizes of the
matrix multiplication unit and local buffers must be
tuned carefully to achieve optimal efficiency on one
of the aforementioned metrics. In addition to the
size of each unit, deep learning accelerators also of-
ten have parameters such as dataflow, SRAM bank-
ing and ports, on-chip network architecture, and
data type support that might change from generation
to generation. For this project, we focus on matrix
multiplication unit and buffer sizing as these param-
eters are the focus of ConfuciuX.

Figure 2: Exponential growth of state-of-the-art AI
models. Figure from [4].

2.2 Hardware Simulation Cost

Figure 3: High-level architecture of an accelera-
tor as represented within an analytical performance
model, MAESTRO. The figure also shows the va-
riety of parameters that can be reconfigured and
make up a large, challenging search space. Figure
from [15].

One of the main tasks of computer architects is
to optimize important parameters of a hardware de-
sign. However, evaluating hardware performance

2



tends to be costly. Since producing a real chip takes
months, architects typically evaluate candidate ar-
chitectures on a range of other platforms. These
platforms include register transfer-level (RTL) sim-
ulation using electronic design automation (EDA)
tools such as Synopsys VCS or the open-source al-
ternative Verilator, but these tools are typically slow
(on the order of magnitude of hours for a single
evaluation), since they must reproduce the switch-
ing behavior of the entire design over the course
of an entire software program. A faster alterna-
tive is FPGA-based simulation using tools such as
FireSim [14], which can run at hundreds of MHz
and complete an evaluation in minutes, but these re-
quire each unique hardware design to be compiled
into an FPGA-friendy binary format, which can take
tens of minutes. Emulation platforms such as Ca-
dence Palladium work similarly and run even faster,
but are not available for the typical user due to their
high cost.

The fastest evaluation method is by analyti-
cal model, for example Timeloop [18] or MAE-
STRO [15], which are both analytical models tar-
geted towards deep learning accelerators. These
tools can run an evaluation in less than a second,
but are far less accurate than the previously de-
scribed methods. Rather than reproduce the behav-
ior of hardware cycle by cycle, they generate an
estimate of accelerator performance by calculating
the latency of high-level operations such as mem-
ory reads and writes and matrix multiplications, and
estimating the amount of time-domain overlap be-
tween such operations. In our work, we use MAE-
STRO as our evaluation platform, as this was the
platform used for ConfuciuX, and allows us to eval-
uate our methods in a reasonable amount of time.
However, industry teams typically do not rely on
such coarse-grained models to make important de-
sign decisions that will affect the manufacturing of
thousands or millions of chips. Therefore, it is im-
portant to develop algorithms that will reduce the
number of expensive simulations that are required
to identify the optimal parameterization for a given
hardware design.

Search Method Works

Heuristics-Driven: Interstellar [21]

Black-Box
Optimization:

Bayesian Optimization [20]
Apollo: P3BO [22]

NAAS: Evolutionary [17]

Gradient-Based
Optimization:

EDD [16]
DiffTune [19]

Search Space
Optimization:

VAESA [7]

Reinforcement Learning:
ConfuciuX [13]

Jiang et al. [9, 10]
ConfuciuX-TF (This Work)

Table 1: Accelerator design space exploration ap-
proaches. Due to the popularity of machine learning
and deep learning in recent years, many data-driven ap-
proaches have been implemented to attempt to reduce
hardware search time.

3 Related Work

Despite several years of iteration on the TPU and
similar architectures, it is still not possible to
achieve 100% utilization of hardware resources.
However, there has been a significant amount of
research effort and progress towards this end. In
particular, researchers have applied ideas from the
fields of optimization and machine learning to
lessen the cost of searching for the best hardware
design point. In this section, we describe previous
works in this domain.

3.1 Hardware Design Space Exploration

Architects have been taking a data-driven approach
to hardware design space exploration for several
decades. In particular, as multiprocessor CPUs
became more popular in the early 2000s, making
CPU architectures significantly more complicated,
the For example, Ipek at al. [8] used neural networks
as early as 2006 to predict performance given CPU
and workload parameters. With the extreme popu-
larity in recent years of machine learning in almost
every application, various data-driven approaches
have been attempted. We attempt to characterize
the research area in Table 1, though there are many
other works that are not cited.

3



3.2 Heuristics-Driven Approaches

One historically common approach to DSE is where
hardware designers use known heuristics to prune
the search space, then use random or brute-force
search to explore the remaining space. This ap-
proach is efficient if the pruned space is well-
defined, but it is possible that optimal search points
may be eliminated if pruning is done incorrectly.
The method is also impossible if heuristics are not
available for a certain problem. An example of this
approach is Interstellar [21], in which the accel-
erator search space is limited to sets of dataflows
and memory buffer ratios that are known to perform
well.

3.3 Black-box Optimization

Another common approach to design space explo-
ration is black-box optimization, which typically fo-
cuses on optimizing a task with an unknown objec-
tive function but which can return a reward function
to provide feedback to the optimizer. Perhaps the
most common among these algorithms is Bayesian
optimization, which maintains a statistical model of
an unknown objective function. In Bayesian opti-
mization, an acquisition function is applied to en-
sure that a wide range of points are explored, while
still exploiting known good regions and tending to
search those. Bayesian optimization is easy to use
and according to works such as Shi et al. [20],
can provide good performance and converge con-
sistently on problems such as accelerator DSE and
neural network-accelerator scheduling.

3.4 Gradient-based Optimization

When the objective function is differentiable, gradi-
ent ascent or descent can be directly applied to the
search parameters to find desirable points. Com-
pared to black-box optimization, gradient-based
methods tend to run faster and scale to a larger
number of inputs, as is demonstrated by the use of
gradient-based optimization in training neural net-
works. Even if the objective function cannot be di-
rectly differentiated, it is possible to construct a dif-
ferentiable surrogate objective function, for exam-
ple using a neural network, that approximates the
true objective function and apply gradient ascent or

descent to the surrogate function. Hardware perfor-
mance is one area where such techniques have been
applied, as demonstrated by recent works that use
differentiable surrogate models to optimize acceler-
ator performance [2] and improve simulator accu-
racy [19].

3.5 Search Space Optimization

The hardware design to performance function is
complex, since it depends not just on hardware pa-
rameters, but also on the workload being run and
the way that workload maps to the given hardware
design. Hardware design points also tend to be dis-
crete, with some components only supporting mul-
tiples of a certain size or powers of two in some
parameters. When this is the case, it may be ben-
eficial to remap the search space to make it easier
to search. VAESA [7] applies variational autoen-
coders to create a more amenable latent space for
DSE, where both black-box and gradient-based op-
timization methods can perform more efficiently.

3.6 Reinforcement Learning (RL)

In the past few years, deep reinforcement learning
(DRL) has advanced rapidly, evolving from game-
play benchmarks to solving massive-scale real-
world optimization problems. It has been applied
across domains, and naturally has been applied to
hardware design space exploration as well. Recent
works by Jiang et al. [10, 9] show how RL can be
used to co-optimize the hardware design and neu-
ral network architecture. We are particularly inter-
ested in ConfuciuX [13], which combines RL and
genetic algorithms to optimize hardware resource
assignments. Specifically, we focus on the RL agent
present in the system.

4 ConfuciuX

ConfuciuX [13] optimizes the number of process-
ing elements (also known as multiply-accumulate
units) and the size of the local buffer, which stores
part of the inputs, weights, and output partial sums.
The input to the optimizer is a set of layers mak-
ing up a neural network, for example ResNet-50,
and the dataflow of an existing industry or academic

4



deep learning accelerator, one of NVDLA [1], Ey-
eriss [3], or ShiDianNao [5]. ConfuciuX optimizes
hardware parameters given one layer at a time, but
utilizes information about what hardware parame-
ters were found for previous layers in its observa-
tions.

4.1 Observations

In ConfuciuX, the observations are 10-dimensional
and consist of: 7 dimensions defining shape of one
layer, 2 dimensions describing the optimal PE and
buffer sizes found at the previous layer, which are
the previous actions, and 1 dimension representing
the index of the current layer in the overall neural
network (action status).

4.2 Actions

The two actions are the PE dimension, limited to a
set of 12 possible values, and the buffer size, also
limited to a set of 12 values.

4.3 Reward Function

Performance estimates on the target neural network
layers are provided by MAESTRO [15], an ana-
lytical performance model for neural network ac-
celerators. In ConfuciuX, in addition to latency
and energy performance objectives, there is also a
chip area constraint. Chip area is also estimated
by MAESTRO. Since it is more expensive to pro-
duce larger chips, despite larger chips being gener-
ally more performant, it is important to put a con-
straint on the types of designs that can be generated.
From [13], the reward function is as follows:

R =

{
Pt −Pmin, ifLbudget ≥ 0
Penalty,otherwise

(1)

According to the paper, Pt is performance on the
current layer, Pmin is the worst performance found
so far (both are negative), Lbudget is the area bud-
get remaining, and Penalty is the negation of all
summed rewards in the current episode.

Figure 4: ConfuciuX policy network architecture

4.4 RL Algorithm

ConfuciuX uses REINFORCE as its underlying al-
gorithm. Figure 4 depicts the original ConfuciuX
policy network architecture. The policy network is
a recurrent neural network (RNN) with long short-
term memory (LSTM) architecture, where at each
time step the next layer in the target network is ex-
amined. An LSTM is used in order to reuse infor-
mation from past decisions made for other layers.

5 ConfuciuX-TF Architecture

The policy in ConfuciuX is a combination of fully-
connected layers and an LSTM. We hypothesized
that replacing the RNN-based policy network of
ConfuciuX with a transformer-based model will
find a hardware configuration with better rewards,
i.e. the execution time to run a deep learning model.
We have three inputs to the ConfuciuX policy net-
work from the observations mentioned in section
4.1, which are the dimensions of the neural net-
work model layers, the action values (the number
of PEs and the size of buffers), and the action sta-
tus (whether the action is done or not). As in figure

5



4, The original ConfuciuX policy network converts
the inputs to three vectors of same size pass the con-
catenation of the three vectors through a number of
linear layers to a size of hidden dimension, feed it
to an LSTM, and then convert it to size of the action
dimension with linear layers.

Figure 5: ConfuciuX-TF policy network architec-
ture

We converted the original policy network to a
combination of a transformer encoder and a smaller
number of linear layers. The original policy net-
work uses 10 linear layers and one LSTM, while our
solution uses 2 linear layers and one transformer en-
coder. Usually, an embedding layer and a positional
encoder is used to process the input before feeding
it to a transformer network. We omitted the posi-
tional encoder because unlike tokens in a language
model our inputs do not have a dependency or rela-
tion due to their relative positions. Also, we did not
use an embedding layer to process our inputs since
our three inputs with the same value should not be
translated into the same embedding vector. Instead,
we concatenated the three inputs and fed it to a lin-
ear layer.

Figure 6: Hyperparameter search over dropout

6 Evaluation

We compared our ConfuciuX-TF solution and the
vanilla ConfuciuX on a fixed random seed. Our
evaluation result is described in table 2. The vanilla
ConfuciuX baseline result differs from [13] because
of the random seed.

6.1 Hyperparameter search

Before comparing our Confuciux-TF solution with
the baseline, we performed a grid search of hyper-
parameters to find the optimal policy network that
achieves the best optimization results (execution cy-
cles).

First, we did a sweep over the dropout rate of
the transformer encoder layers. Then, we did a grid
search over the following four hyperparameters. We
also did a simple sweep like what we did on the
dropout rate over the following four hyperparame-
ters before doing the grid search, but we found that
searching over only one of these hyperparameters
were not enough to find the best combination of the
four to achieve the best latency.

1. d model is equivalent to the dimension of the
embedding vector if an embedding layer was
used. d model can be also seen as the input
size of the transformer encoder.

2. d hid is the dimension of the feedforward net-
work in the transformer encoder layer.

6



10 15 20 25 30
d_model

3.2

3.3

3.4

3.5

3.6

3.7

3.8

la
te

nc
y 

(c
yc

le
s)

1e8

100 150 200 250
d_hid

3.2

3.3

3.4

3.5

3.6

3.7

3.8

la
te

nc
y 

(c
yc

le
s)

1e8

1.0 1.5 2.0 2.5 3.0 3.5 4.0
nhead

3.2

3.3

3.4

3.5

3.6

3.7

3.8

la
te

nc
y 

(c
yc

le
s)

1e8

1.0 1.5 2.0 2.5 3.0
nlayers

3.2

3.3

3.4

3.5

3.6

3.7

3.8

la
te

nc
y 

(c
yc

le
s)

1e8

Figure 7: Scatter plots of all 81 hyperparameter search points evaluated for the optimal policy network,
showing the distribution of points across one axis at a time. The orange point in each plot is the best
searched set of hyperparameters, with settings d model=16, d hid=128, n head=2, n layers=2.

(a) Resnet-50, NVDLA (b) Resnet-50, Eyeriss (c) Resnet-50, ShiDianNao

Figure 8: Training curve

3. nhead is the number of heads in the multi-
head attention model in the transformer en-
coder layer.

4. nlayers is the number of transformer encoder
layers in the transformer encoder.

Our hyperparameter sweep results are depicted in
figure 6 and 7. We tested each setting on Resnet-50

workload and ShiDianNao hardware architecture.

To begin with the dropout, we fixed the other four
hyperparameters. Figure 6 shows that dropout of 0.3
is the best setting.

Each dot in figure 7 corresponds to the latency
result of each setting, where smaller latency is bet-
ter. The orange dot is our best setting, where
d model=16, d hid=128, n head=2, n layers=2. We

7



Model Architecture Baseline ConfX-TF Improvement
ResNet-50 NVDLA 3.24E+08 2.53E+08 21.9%
ResNet-50 Eyeriss 2.49E+08 2.28E+08 8.3%
ResNet-50 ShiDianNao 3.29E+08 3.15E+08 4.2%
MnasNet NVDLA 2.52E+08 2.44E+08 3.0%
MnasNet Eyeriss 8.94E+08 6.39E+08 28.4%
MnasNet ShiDianNao 10.21E+08 8.68E+08 15.0%

ShuffleNet-V2 NVDLA 3.24E+08 2.53E+08 21.9%
ShuffleNet-V2 Eyeriss 2.49E+08 2.28E+08 8.3%
ShuffleNet-V2 ShiDianNao 3.29E+08 3.15E+08 4.2%

Table 2: The result above is latency (execution time) for running the model on the hardware configuration
found by the agent based on the (hardware) architecture. Baseline used vanilla ConfuciuX and our solution
used ConfuciuX-TF. The latency is rounded to the nearest hundredth and the improvement in percentage is
rounded to the nearest tenth.

will use these hyperparameter values to compare
our solution to the baseline in the next section.

6.2 Agent Performance

We ran our solution and the baseline ConfuciuX
with an epoch of 333 and we used RL-only option
when running both agents. Our training curves in
figure 8 prove that the epoch of 333 is enough to
gather a converged solution per each run. As stated
in [13], our search objective (reward) is latency and
our constraint is area. We tested on different neu-
ral network workloads and different hardware archi-
tecture styles using the same experiment constraint
as in table III of [13]. For example, Resnet uses a
looser area constraint (Cloud in [13]) while Mnas-
Net and ShuffleNet use tighter area constraints (IoT,
IoTx in [13]). Our result is in Table 2.

Table 2 suggests that our solution outperformed
the baseline in every model and hardware archi-
tecture style. The average latency improvement is
12.1%, which is a significant saving considering the
scale of the execution time.

6.3 Runtime

Our ConfuciuX-TF solution not only achieves a bet-
ter target metric, which is the latency to run a neural
network model workload in this case, but also a bet-
ter exploration time. Since ConfuciuX-TF replaced
the LSTM cell of the policy in ConfuciuX with a
transformer encoder, we can gain benefit from the

Model, Arch Baseline ConfX-TF Improv.
Resnet-50, NVDLA 12m 38s 9m 29s 24.9%
Resnet-50, Eyeriss 9m 20s 6m 10s 33.9%

Resnet-50, ShiDianNao 9m 34s 6m 41s 30.1%
MnasNet, NVDLA 11m 53s 8m 10s 31.3%
MnasNet, Eyeriss 8m 30s 5m 22s 36.9%

MnasNet, ShiDianNao 11m 9s 6m 33s 41.3%
ShuffleNet, NVDLA 6m 42s 5m 52s 12.4%
ShuffleNet, Eyeriss 6m 8s 5m 58s 2.7%

ShuffleNet, ShiDianNao 7m 2s 4m 57s 29.6%

Table 3: The time to run ConfuciuX-TF and Confu-
ciuX for 333 RL steps.

running time. The time to run the baseline agent for
333 steps is in average 9.2 minutes while the time to
run ConfuciuX-TF agent is about 6.6 minutes. More
accurate running times on different model and ar-
chitecture are described in table 3. The results in
table 3 shows that our ConfuciuX-TF solution had
a significant 27% runtime saving compared to the
baseline ConfuciuX agent. This is a huge gain con-
sidering the scale and the iterative nature of hard-
ware design space exploration.

7 Conclusion

In this paper, we propose a transformer-based RL
approach on hardware design space exploration. To
be specific, we replace the RNN-based policy net-
work of a prior RL-based work [13] with a neural
network comprised mainly of transformer encoder

8



layers. We test our new agent in a similar setting to
[13] to observe the overall improvement in terms of
finding a more optimal hardware configuration for
running deep learning workloads, in other words a
hardware configuration that results in lower latency.
We have shown that our proposed ConfuciuX-TF
agent achieves 12.1 percent better latency on aver-
age compared to the baseline ConfuciuX agent.

Also, when we substitute the RNN with a trans-
former encoder of similar hidden layer size, the it-
eration time of the agent becomes shorter than that
of the baseline ConfuciuX agent. Our experiments
show that the runtime improvement is 27 percent on
average. This means with our proposed solution, we
can dramatically reduce the time to find a hardware
configuration, which is a very iterative and tedious
process. Considering the importance of automated
design space exploration, this positive result intro-
duces new opportunities for future usage.

References

[1] Nvidia deep learning accelerator (nvdla). https://nv

dla.org/, 2017.

[2] ACHARARIT, P., HANIF, M. A., PUTRA, R. V. W.,
SHAFIQUE, M., AND HARA-AZUMI, Y. Ap-
nas: Accuracy-and-performance-aware neural architec-
ture search for neural hardware accelerators. IEEE Access
8 (2020).

[3] CHEN, Y.-H., KRISHNA, T., EMER, J. S., AND SZE,
V. Eyeriss: An energy-efficient reconfigurable accelera-
tor for deep convolutional neural networks. IEEE Journal
of Solid-State Circuits 52, 1 (2017), 127–138.

[4] DEEPAK NARAYANAN, MOHAMMAD SHOEYBI, J. C.
P. L. M. P. V. K. D. V., AND CATANZARO, B. Scaling
Language Model Training to a Trillion Parameters Using
Megatron. https://developer.nvidia.com/blog/
scaling-language-model-training-to-a-trill

ion-parameters-using-megatron/.

[5] DU, Z., FASTHUBER, R., CHEN, T., IENNE, P., LI, L.,
LUO, T., FENG, X., CHEN, Y., AND TEMAM, O. Shidi-
annao: Shifting vision processing closer to the sensor. In
2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA) (2015), pp. 92–104.

[6] HENNESSY, J., AND PATTERSON, D. John hennessy and
david patterson deliver turing lecture at isca 2018, 2018.

[7] HUANG, Q., HONG, C., WAWRZYNEK, J., SUBEDAR,
M., AND SHAO, Y. S. Learning a continuous and recon-
structible latent space for hardware accelerator design.
In International Symposium on Performance Analysis of
Systems and Software (ISPASS) (2022).

[8] ÏPEK, E., MCKEE, S. A., CARUANA, R., DE SUPINSKI,
B. R., AND SCHULZ, M. Efficiently exploring architec-
tural design spaces via predictive modeling. In Proceed-
ings of the 12th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2006), ASPLOS XII,
Association for Computing Machinery, p. 195–206.

[9] JIANG, W., YANG, L., DASGUPTA, S., HU, J., AND

SHI, Y. Standing on the shoulders of giants: Hardware
and neural architecture co-search with hot start. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2020).

[10] JIANG, W., YANG, L., SHA, E. H.-M., ZHUGE,
Q., GU, S., DASGUPTA, S., SHI, Y., AND HU,
J. Hardware/software co-exploration of neural architec-
tures. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) (2020).

[11] JONES, A., YAZDANBAKHSH, A., AKIN, B., ANGER-
MUELLER, C., LAUDON, J. P., SWERSKY, K.,
HASHEMI, M., NARAYANASWAMI, R., CHATTERJEE,
S., AND ZHOU, Y. Apollo: Transferable architecture ex-
ploration. In ML for Systems Workshop at NeurIPS 2020
(2020).

[12] JOUPPI, N. P., YOUNG, C., PATIL, N., PATTERSON,
D., AGRAWAL, G., BAJWA, R., BATES, S., BHATIA,

9



S., BODEN, N., BORCHERS, A., BOYLE, R., CANTIN,
P.-L., CHAO, C., CLARK, C., CORIELL, J., DALEY,
M., DAU, M., DEAN, J., GELB, B., GHAEMMAGHAMI,
T. V., GOTTIPATI, R., GULLAND, W., HAGMANN, R.,
HO, C. R., HOGBERG, D., HU, J., HUNDT, R., HURT,
D., IBARZ, J., JAFFEY, A., JAWORSKI, A., KAPLAN,
A., KHAITAN, H., KILLEBREW, D., KOCH, A., KU-
MAR, N., LACY, S., LAUDON, J., LAW, J., LE, D.,
LEARY, C., LIU, Z., LUCKE, K., LUNDIN, A., MACK-
EAN, G., MAGGIORE, A., MAHONY, M., MILLER, K.,
NAGARAJAN, R., NARAYANASWAMI, R., NI, R., NIX,
K., NORRIE, T., OMERNICK, M., PENUKONDA, N.,
PHELPS, A., ROSS, J., ROSS, M., SALEK, A., SAMA-
DIANI, E., SEVERN, C., SIZIKOV, G., SNELHAM, M.,
SOUTER, J., STEINBERG, D., SWING, A., TAN, M.,
THORSON, G., TIAN, B., TOMA, H., TUTTLE, E., VA-
SUDEVAN, V., WALTER, R., WANG, W., WILCOX, E.,
AND YOON, D. H. In-datacenter performance analysis
of a tensor processing unit. In Proceedings of the 44th
Annual International Symposium on Computer Architec-
ture (New York, NY, USA, 2017), ISCA ’17, Association
for Computing Machinery, p. 1–12.

[13] KAO, S., JEONG, G., AND KRISHNA, T. Confuciux:
Autonomous hardware resource assignment for DNN ac-
celerators using reinforcement learning. In 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO (2020), IEEE, pp. 622–636.

[14] KARANDIKAR, S., MAO, H., KIM, D., BIANCOLIN,
D., AMID, A., LEE, D., PEMBERTON, N., AMARO,
E., SCHMIDT, C., CHOPRA, A., HUANG, Q., KO-
VACS, K., NIKOLIC, B., KATZ, R., BACHRACH, J.,
AND ASANOVIĆ, K. FireSim: FPGA-accelerated cycle-
exact scale-out system simulation in the public cloud. In
Proceedings of the 45th Annual International Symposium
on Computer Architecture (Piscataway, NJ, USA, 2018),
ISCA ’18, IEEE Press, pp. 29–42.

[15] KWON, H., CHATARASI, P., PELLAUER, M.,
PARASHAR, A., SARKAR, V., AND KRISHNA, T.
Understanding reuse, performance, and hardware cost
of DNN dataflow: A data-centric approach. In Pro-
ceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO (2019), ACM,
pp. 754–768.

[16] LI, Y., HAO, C., ZHANG, X., LIU, X., CHEN, Y.,
XIONG, J., HWU, W.-M., AND CHEN, D. Edd: Ef-
ficient differentiable dnn architecture and implementa-
tion co-search for embedded ai solutions. arXiv preprint
arXiv:2005.02563 (2020).

[17] LIN, Y., YANG, M., AND HAN, S. Naas: Neural accel-
erator architecture search. In Design Automation Confer-
ence (DAC) (2021).

[18] PARASHAR, A., RAINA, P., SHAO, Y. S., CHEN, Y.-
H., YING, V. A., MUKKARA, A., VENKATESAN, R.,
KHAILANY, B., KECKLER, S. W., AND EMER, J.
Timeloop: A systematic approach to dnn accelerator
evaluation. In 2019 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS)
(2019), pp. 304–315.

[19] RENDA, A., CHEN, Y., MENDIS, C., AND CARBIN,
M. Difftune: Optimizing cpu simulator parameters with
learned differentiable surrogates. In Proceedings of the
International Symposium on Microarchitecture (MICRO)
(2020).

[20] SHI, Z., SAKHUJA, C., HASHEMI, M., SWERSKY, K.,
AND LIN, C. Using bayesian optimization for hard-
ware/software co-design of neural accelerators. In Work-
shop on ML for Systems at the Conference on Neural In-
formation Processing Systems (NeurIPS) (2020).

[21] YANG, X., GAO, M., LIU, Q., SETTER, J., PU, J.,
NAYAK, A., BELL, S., CAO, K., HA, H., RAINA, P.,
KOZYRAKIS, C., AND HOROWITZ, M. Interstellar: Us-
ing halide’s scheduling language to analyze dnn acceler-
ators. In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operation Systems (ASPLOS) (2020).

[22] YAZDANBAKHSH, A., ANGERMUELLER, C., AKIN,
B., ZHOU, Y., JONES, A., HASHEMI, M., SWERSKY,
K., CHATTERJEE, S., NARAYANASWAMI, R., AND

LAUDON, J. Apollo: Transferable architecture explo-
ration. arXiv preprint arXiv:2102.01723 (2021).

10


