
MODELING DNN LAYER PERFORMANCE ACROSS
ACCELERATOR DESIGNS

CS 267 FINAL PROJECT

Charles Hong
University of California, Berkeley
charleshong@berkeley.edu

November 5, 2021

ABSTRACT

In recent years, the popularity of deep neural networks (DNNs) has led to the development of
specialized DNN accelerators that utilize large numbers of parallel processing elements to improve
throughput. Like other computational hardware, DNN accelerators must schedule their workloads
in order to optimally parallelize a DNN layer on the given hardware. However, the configuration of
the accelerator can have a large impact on what schedules are optimal, or even valid. In this project,
we evaluate three main machine learning models on the task of predicting deep neural network layer
runtime on new, unseen parallel accelerator designs. We present an analytically preprocessed feature
set that improves the performance of our random forest model beyond the other two, and show the
usefulness of MDI feature importance analysis with random forest models, utilizing the method
to identify the most predictive input features. Finally, we show that the random forest model can
accurately predict layer runtime on unseen accelerator designs as well as predict whether schedules
are valid or invalid.

Keywords Parallelism · Deep neural networks · Computer architecture · Accelerators

1 Introduction

Specialized deep neural network (DNN) accelerators, such as Google’s Tensor Processing Unit (TPU), are becoming
more and more common. In order to use these accelerators, compilers must schedule nested loop workloads, such
as convolutional neural network layers, by defining their ordering, tiling, and spatial mapping (which dimensions are
parallelized). Currently, these schedules often do not optimally parallelize their workloads [1].

By accurately modeling the performance and energy usage across different DNN layers and accelerator architectures,
we can find DNN layer schedules that more optimally parallelize computation, even on hardware configurations that
have not yet been deployed. This would allow for rapid software-hardware co-design of machine learning compilers
and DNN accelerators, bypassing long simulation times that are often a barrier to optimal hardware design [2]. In
addition, such a model could allow for co-scheduling of DNN layers on a partitioned accelerator, which would provide
an additional level of parallelism to spatial accelerators like the TPU, which are already inherently parallel. The goal of
this work is to understand whether it is possible to build this type of generalizable model, while keeping it accurate and
interpretable enough to inform future design choices.

2 Background

This project builds on CoSA (Constrained Optimization for Spatial Accelerators) [1], which focuses on identifying an
optimization strategy for DNN layer scheduling on the Simba accelerator [3]. CoSA uses mixed integer programming
techniques to solve for the optimal performance and energy given resource constraints. To evaluate a schedule, CoSA
integrates Timeloop [4], which provides microarchitecture- and technology-specific energy models that help estimate
performance and energy of the accelerator. Additionally, there are other works related specifically to modeling DNN



Modeling DNN Layer Performance CS 267 FINAL PROJECT

Figure 1: From “CoSA: Scheduling by Constrained Optimization for Spatial Accelerators” [1]

accelerator performance. Figure 1 shows where CoSA fits in to the DNN flow. Particularly relevant to this work are the
constraints in CoSA’s schedule optimization: buffer capacity constraints (whether the schedule calls for an amount of
on-chip buffer usage that exceeds the amount available) and spatial constraints (whether the schedule calls for parallel
computation that exceeds the number of parallel compute units available).

3 Related Work

3.1 A Learned Performance Model for the Tensor Processing Unit

In this work, Kaufman et al. [5] train a neural network over kernel-level sub-graphs of a neural network to predict its
performance on a TPU. This allows for optimization of the operator fusion configuration and layer tile-size selection.
This work focuses on building an end-to-end performance model for a neural network, targeted specifically to the TPU.
The performance model is then used to tune ML compilers for this specific accelerator. In contrast, our performance
model seeks to predict parallel performance on arbitrary accelerator configurations, with the goal of enabling faster
hardware-software codesign.

3.2 Mind Mappings

Another prior work that addresses a similar problem is Mind Mappings [6]. This work focuses on choosing DNN
schedules based on fast, gradient-based search algorithms. The authors enable the use of such algorithms by collecting
data on the performance and energy usage of broadly sampled DNN layer schedules, and using it to train a surrogate
multi-layer perceptron (MLP) model. Mind Mappings motivates our work by indicating that a surrogate machine-
learning based model for neural network performance prediction can provide enough accuracy to inform neural network
scheduling on accelerators. In this project, we extend this idea to both neural network scheduling and accelerator
design, and present new insights on what types of models can be used. Like the previous work, Mind Mappings trains a
performance model for a specific hardware configuration.

4 Infrastructure

A significant portion of this project’s contribution is in building infrastructure that allows the fast evaluation of different
machine learning models on different accelerator designs and neural network layer schedules. This is because in order
to evaluate the performance and usefulness of different types of models, we first need to construct our dataset. This task
took place in two parts.

4.1 Accelerator Generation

In order to model DNN layer performance on different hardware, we generate a wide range of accelerator descriptions
that could be passed to Timeloop. The amount of parallel processing hardware is defined by the number of multiply-
accumulate units (MACs), which are divided among the processing elements (PEs). Each PE’s on-chip memory is
divided amongst the accumulation, weight, input, and global buffers, which can each have different problem data mapped
into them. For some experiments, a limited number of accelerator configurations was used, including simba_final,

2



Modeling DNN Layer Performance CS 267 FINAL PROJECT

Figure 2: Summary of the approach taken.

Table 1: Preset accelerator parameters
Parameter simba_final simba_final_8x8 simba_large arch0 arch1

No. of PEs 16 64 16 16 16
No. of MACs 1024 4096 1024 1024 4096
Accumulation buffer size / PE 3 KiB 12 KiB 6 KiB 6 KiB 3 KiB
Weight buffer size / PE 32 KiB 128 KiB 64 KiB 64 KiB 16 KiB
Input buffer size / PE 8 KiB 32 KiB 16 KiB 16 KiB 16 KiB
Global buffer size / PE 64 KiB 256 KiB 128 KiB 32 KiB 64 KiB

Table 2: Generated accelerator parameters (2304 configurations)
Parameter Minimum value used Maximum value used

No. of PEs 4 64
No. of MACs 256 4096
Accumulation buffer size / PE 1.5 KiB 12 KiB
Weight buffer size / PE 8 KiB 128 KiB
Input buffer size / PE 2 KiB 32 KiB
Global buffer size / PE 16 KiB 256 KiB

the accelerator configuration used by Simba [3]. These configurations can be found in Table 1. For other experiments,
we generated 2304 different accelerator descriptions with parameters throughout the ranges given in Table 2.

4.2 Schedule Generation

Another challenging aspect of data generation is generating schedules throughout the search space for each accelerator
configuration. In order to randomly generate schedules, we consider the loop nest representation in Figure 3. A deep
neural network layer, for example a convolutional layer, can be thought of as a program that iterates through various
problem dimensions, including the input and output width and height, weight width and height, input and output channel
sizes, and batch size. The size of each dimension can be decomposed into its prime factors. These can be used to
determine the following:

• Loop permutation, the order of the dimensions in the computational loop nest can be permuted depending on
the specific problem dimensions.

• Memory mapping, how much of each problem dimension should be mapped to each memory level. This
determines buffer usage.

• Spatial mapping, how much parallel computation is allotted to a dimension. This determines parallel spatial
resource utilization.

A schedule can either be valid, meaning it does not exceed the hardware resources available, or invalid, meaning
computational or memory requirements are not met. For each of the 2304 generated accelerator configurations, we
randomly set the loop permutation, loop tiling, and spatial mapping of each dimension using its prime factors until

3



Modeling DNN Layer Performance CS 267 FINAL PROJECT

Figure 3: An example loop nest representation of a DNN layer schedule. (From “CoSA:
Scheduling by Constrained Optimization for Spatial Accelerators” [1])

we had 10 valid and 100 invalid schedules for each of the 24 computationally distinct layers of ResNet-50, a popular
convolutional neural network used for computer vision. This resulted in a total of around 6 million schedules, around
9 percent of them valid. We also used a separate dataset of 3000 valid schedules per layer for each of the 5 preset
accelerator configs in Table 1, for a total of 360,000 schedules.

5 Modeling

5.1 Features

All combined, the accelerator and schedule parameters in Section 4 result in a total of 132 input features, including 126
schedule features. In order to reduce the computational cost of training our model, we experiment with the use of prior
work from CoSA [1] to analytically combine the 126 schedules features into 30 features that encode a similar amount
of information. This is done through the following methods:

• Estimate the utilization of each buffer by each data type (weights, input activations, and output activations)
based on memory mappings.

• For each buffer, multiply the spatial mapping factors of each problem dimension that are mapped to that buffer.
• Estimate global buffer and DRAM communication cost using the traffic-driven objective from CoSA [1].

These new input features can aid in prediction by adding doing some processing ahead of time. The compressed feature
set also significantly reduces training time—for example, our random forest model takes 21 minutes to train on around
6 million schedules with 132 input features, and just 11 minutes with 36 input features.

5.2 Models

Table 3: Models used
Model type Description Interpretability Training time

Linear regression Ordinary least squares High Low
Random forest 1000 trees, no max depth Medium High
Multi-layer perceptron Hidden layer dimensions: (64, 32, 16, 4) Low High

This project focuses on the evaluation of three basic types of machine learning models: linear regression, random
forest, and multi-layer perceptron. A description specific models used can be found in Table 3, along with a general
classification of each model’s interpretability and training time. In recent years, neural network models like multi-layer
perceptrons have become highly popular modeling tools due to their accuracy and differentiability, as in Mind Mappings
[6]. However, a significant drawback of neural network models is their lack of interpretability. Though many efforts

4



Modeling DNN Layer Performance CS 267 FINAL PROJECT

have been made to understand the meaning of neural network parameter values, this is still a largely unsolved problem
[7]. On the other hand, linear regression coefficients provide direct insight into how each input feature affects the output.

Random forests lie somewhere in between. Because random forests predict by averaging the outputs of many decision
trees, it is not immediately obvious how each input feature affects the regression output. However, some insight can
fairly easily be gained through a method called feature importance, specifically through Mean Decrease Impurity (MDI).
In MDI, a given feature’s importance is calculated by summing up the decrease in Gini impurity associated with all
splits performed according to that feature [9]. The individual trees in a random forest can also be visualized, though this
does not fully express how the random forest predicts.

6 Experiments

Figure 4: Schedule comparison accuracy for the three model types, trained on 3000 sched-
ules/layer on 5 different accelerators.

Figure 6 summarizes the generalizability of each model in Section 5.2 to new, unseen layer schedules. Each model
is trained to predict the cycle count of a schedule on 3000 schedules per layer of the 5 accelerators configurations
from Table 1, on 21 of the 24 computationally unique layers of ResNet-50, with the original set of 132 accelerator and
schedule parameters as input features. Schedules for three remaining layers make up the test set; two of the test set
layers are convolutional layers, and one is a fully connected layer. For each accelerator, for each of these three layers,
the model is evaluated on all pairs of schedules. The "Schedule Comparison Accuracy" of a model is the proportion of
pairs where the model accurately predicts which schedule is slower (has a higher cycle count), and which is faster (has
a lower cycle count).

Unsurprisingly, linear regression performs the worst at 67% accuracy. Using the 132 original input features, the random
forest and MLP models perform similarly, with 89% and 86% accuracy respectively.

6.1 CoSA-Preprocessed Features

Also in Figure 6 are the results of the same experiment, using instead the compressed set of 36 analytically preprocessed
features. With this new feature set, the linear regression and MLP models maintain similar accuracy as with 132 features.
The random forest model, however, sees its accuracy increase to nearly 100%. We hypothesize that this is because the
preprocessed feature set encodes most of the same information as before while significantly reducing dimensionality,
meaning it encodes more information per feature. This increases the predictive power of each split in the decision trees
that make up the random forest, greatly improving the random forest’s efficiency.

This explanation is supported by the MDI feature importance analysis of the random forest models trained on the two
sets of features. With the original feature set, there are several features with an MDI of 0.06–0.1. With the preprocessed
feature set, the most important feature, utilized_spatial_factors_memlvl4, has an MDI of over 0.5. This feature
is the product over all problem dimensions of the spatially mapped prime factors that are allocated to the global buffer
of the accelerator. It makes sense that this value is highly predictive of DNN layer schedule runtimes, since memory
access can be a significant portion of a program’s runtime, and the global buffer is the largest of the local buffers.

5



Modeling DNN Layer Performance CS 267 FINAL PROJECT

Figure 5: Random forest feature importance of the original 132 input features, using the MDI
method.

Figure 6: Random forest feature importance of the preprocessed set of 36 input features, using
the MDI method.

6



Modeling DNN Layer Performance CS 267 FINAL PROJECT

One investigation we are not able to fully make in this work is into the meaning of certain schedule features with respect
to accelerator design. For example, it is possible that the importance of global buffer tiling factors means it should
be smaller in order to reach max efficiency, because other buffers may be underutilized relative to the global buffer.
However, it is also possible that the importance of global buffer tiling factors indicates that increasing these factors has
an outsized positive effect on performance, meaning the buffer should be larger. We would like to better explore these
effects in future work.

We also find that the random forest is able to far more accurately predict runtimes of the last (fully connected) layer of
ResNet-50 than the MLP, with schedule comparison accuracies of 97% and 50% respectively. This may be because
a fully connected layer has very different problem dimensions from a convolutional layer, with much larger weights
and only one input and output channel. While the neural network treats such a layer as an outlier, it is possible that a
random forest contains trees that have branches specifically for fully connected layers. In future work, this hypothesis
could be further tested by inspecting the trees in the random forest.

Figure 7: Generalizability of a random forest model to new accelerator architectures.

Figure 8: Schedule validity prediction accuracy, tested on 10% of 2304 different accelerators.

6.2 Model Generalizability to New Architectures

Figure 7 shows the accuracy with which the random forest model compares schedules for a given accelerator, when
trained on the four other accelerators in the smaller dataset. The results, though fairly limited in scope, range from

7



Modeling DNN Layer Performance CS 267 FINAL PROJECT

85% to 99% in accuracy, showing that a random forest is able to new, unseen architectures in some cases. One reason
why this may be the case is that our analytically preprocessed features inherently encode some information about
architectural parameters. For example, the amount of utilized memory entries relates to the size of a buffer. If an
accelerator’s buffer size is increased, then in order for a layer’s runtime to change, the number of utilized memory
entries should increase to take advantage of it. However, the effect of the change memory utilization on the layer’s
runtime may already by encoded in the machine learning model. Additionally, if a memory buffer size is increased, but
the amount of utilized memory entries does not change, then the runtime of such a schedule should remain constant. In
future work, we would like to investigate whether our models are able to identify the roofline of an accelerator design,
and understand whether performance is being limited by computational or communication resources [10].

6.3 Schedule Validity

We also consider whether machine learning models can be used to predict if a schedule is valid or not. This study uses
the dataset of 2304 accelerator architectures, with 10 valid and 100 invalid schedules per layer. The test data consists of
schedules for 230 of these accelerators, which are entirely omitted from the training data. Shown in Figure 8, both the
random forest and MLP models have a near-100% accuracy on this 0/1 classification task, showing that avoiding invalid
schedules should not be a problem if these models are used to generate novel schedules in future work.

7 Conclusion and Future Work

In this project, we evaluate three main machine learning models on the task of predicting deep neural network layer
runtime on new, unseen parallel accelerator designs. After a thorough data analysis, we find that surprisingly, when
combined with a compressed, analytically preprocessed feature set, the most accurate of the three models is the random
forest. We also show the usefulness of MDI feature importance analysis with random forest models, utilizing the
method to identify the most predictive input features. Finally, we show that a random forest model has high potential to
predict layer runtime on unseen accelerator designs, and that statistical methods can be used to avoid invalid schedules.

There are many potential avenues for extending this project. The analysis presented is meant to serve as a building
block towards future exploration of hardware-software co-optimization for deep neural network accelerators. Further
analysis of the models themselves could provide new insights into the importance of specific accelerator or schedule
parameters. For example, as noted in Section 6.1, the MDI feature importance of specific schedule attributes are also
likely related related to the hardware they are run on, meaning that they schedule data may actually provide insight on
the effectiveness of a hardware design. With further tuning, the models could be part of generative or reinforcement
learning-based methods for generating new accelerator designs or more optimally parallel schedules.

8



Modeling DNN Layer Performance CS 267 FINAL PROJECT

8 Acknowledgements

Many thanks to Jenny Huang for help with CoSA and building the project infrastructure, Professor Sophia Shao for
guidance, and the CS 267 course staff (particularly Professor James Demmel) for feedback.

References
[1] Huang, Q. et al. “CoSA: Scheduling by Constrained Optimization for Spatial Accelerators.” International Sympo-

sium on Computer Architecture (ISCA), 2021.
[2] Yazdanbakhsh, A. et al. "Apollo: Transferable Architecture Exploration" arXiv preprint, 2021.
[3] Shao, Y.S. et al. “Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture.” Proceed-

ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, 2019.
[4] Parashar, A. et al. "Timeloop: A Systematic Approach to DNN Accelerator Evaluation." IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), Madison, WI, USA, 2019, pp. 304-315,
doi: 10.1109/ISPASS.2019.00042.

[5] Kaufman, S.J., Mangpo Phothilimthana, P., Zhou, Y., and Burrows, M. “A Learned Performance Model for the
Tensor Processing Unit.” Proceedings of the 4th MLSys Conference, 2021.

[6] Hegde, K. et al. “Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search.” International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2021.

[7] Samek, W. et al. “Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning
models.” arXiv preprint. arXiv:1708.08296, 2017.

[8] Wojtas, A. et al. “Feature Importance Ranking for Deep Learning.” arXiv preprint, 2020.
[9] Scornet, E. "Trees, forests, and impurity-based variable importance." HAL preprint, 2020.
[10] Williams, S. et al. "Roofline: An Insightful Visual Performance Model for Floating-Point Programs and Multicore

Architectures." Communications of the ACM, 2009.

9


	Introduction
	Background
	Related Work
	A Learned Performance Model for the Tensor Processing Unit
	Mind Mappings

	Infrastructure
	Accelerator Generation
	Schedule Generation

	Modeling
	Features
	Models

	Experiments
	CoSA-Preprocessed Features
	Model Generalizability to New Architectures
	Schedule Validity

	Conclusion and Future Work
	Acknowledgements

