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Fast Thread Migration in a Heterogenous ISA System
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e Heterogenous SoCs are an increasingly popular

design choice

e SMP kernels aren’t built to run across diverse ISA
multicore systems

e System designers create custom software

interfaces per |IP block, duplicates effort

Intel’'s Biggest Architectural
Shiftina Decade

= Perfor rma ce hybrid architecture
e

onasingle

improvements for single-threaded
and multi-threaded workloads

= Available on all unlocked 12th Gen
Intel Core desktop processors

Background

e There is a movement towards using RISC-V as the
base ISA across all IP’s
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e Accelerators with an attached processor are a
good idea

e Control processors have ISA extensions to control
the accelerator

e Observation: Having the same base ISA allows a
thread to start on one processor and migrate to
another, based on what ISA extension it requires at
the time

A fast and automatic thread migration mechanism
addresses the heterogeneity of such systems.

e Only a few general-purpose application cores will
run Linux

e Firmware migrates threads to corresponding
accelerator cores when executing extension
instructions and back to general-purpose cores for
OS services

e A single program can move across accelerators
supporting various ISA extensions

ldea: Trap on accelerator-specific custom
instructions, and use that event to trigger a thread
migration to an accelerator control processor

e We use the OpenSBI firmware to detect hart
capabillities and coordinate communication
between firmware and the kernel

e Minimal changes to Linux to handle scheduling
tasks on accelerator cores (~100 LOC)

e Application writer may be oblivious to core
migrations, though intimate knowledge of the
platform can be used for further optimization

Thread Migration Latency

20000
15000

10000

Cycles

5000

0

B Fast thread migration [ Linux core pinning

e [ime for first migration of a task longer due to
time to pin physical memory pages

e Migration requires additional data movement of
saved processor state, so latency scales with how
much state must be saved
o Accelerators with a large scratchpad are a bad

fit for thread migration

e No significant resource contention overhead
expected (i.e. latency scales linearly with number
of application processors vying for same
accelerator)

Scaling Across Application Cores (One Accelerator Core)
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1: A illegal instruction trap is taken on a custom instruction
not supported on this hart

2: M-mode software delegates the trap to Linux, which in
turn makes an SBI call to begin the migration process

3: OpenSBl reads the user’s register state and initiates an
IPI1 to the accelerator peripheral core

4: OpenSBI, now on the accelerator core, dequeues the
requisite execution state and prepares to jump to U-mode
to run the task



