PN

ALIEFT

Project #10: John Fang, Charles Hong, Max Banister

Fast Thread Migration in a Heterogenous ISA System

T TR T

e Heterogenous SoCs are an increasingly popular

design choice

e SMP kernels aren’t built to run across diverse ISA
multicore systems

e System designers create custom software

interfaces per |IP block, duplicates effort

Intel’'s Biggest Architectural
Shiftina Decade

= Perfor rma ce hybrid architecture
e

onasingle

improvements for single-threaded
and multi-threaded workloads

= Available on all unlocked 12th Gen
Intel Core desktop processors

Background

e There is a movement towards using RISC-V as the
base ISA across all IP’s

DSRH

7
%
/4

N

ASIC m FPGA
R

R
FPGA mDSRH DSP
R

)
7))
pe)

-
W=
)

7))
: O
A ——A)

DSP ASIC GPP ASIC GPP

(=
p o)

N N
.

e Accelerators with an attached processor are a
good idea

e Control processors have ISA extensions to control
the accelerator

e Observation: Having the same base ISA allows a
thread to start on one processor and migrate to
another, based on what ISA extension it requires at
the time

A fast and automatic thread migration mechanism
addresses the heterogeneity of such systems.

e Only a few general-purpose application cores will
run Linux

e Firmware migrates threads to corresponding
accelerator cores when executing extension
instructions and back to general-purpose cores for
OS services

e A single program can move across accelerators
supporting various ISA extensions

ldea: Trap on accelerator-specific custom
instructions, and use that event to trigger a thread
migration to an accelerator control processor

e We use the OpenSBI firmware to detect hart
capabillities and coordinate communication
between firmware and the kernel

e Minimal changes to Linux to handle scheduling
tasks on accelerator cores (~100 LOC)

e Application writer may be oblivious to core
migrations, though intimate knowledge of the
platform can be used for further optimization

Thread Migration Latency

20000
15000

10000

Cycles

5000

0

B Fast thread migration [Linux core pinning

e [ime for first migration of a task longer due to
time to pin physical memory pages

e Migration requires additional data movement of
saved processor state, so latency scales with how
much state must be saved
o Accelerators with a large scratchpad are a bad

fit for thread migration

e No significant resource contention overhead
expected (i.e. latency scales linearly with number
of application processors vying for same
accelerator)

Scaling Across Application Cores (One Accelerator Core)

30000000

20000000

Cycles

10000000

Application Cores

OpenSBI M-mode

(&

O

@ S-mode

Linux

U-mode

1: A illegal instruction trap is taken on a custom instruction
not supported on this hart

2: M-mode software delegates the trap to Linux, which in
turn makes an SBI call to begin the migration process

3: OpenSBl reads the user’s register state and initiates an
IPI1 to the accelerator peripheral core

4: OpenSBI, now on the accelerator core, dequeues the
requisite execution state and prepares to jump to U-mode
to run the task

