
Lineage Stash: Fault tolerance (almost) for free
Stephanie Wang, Philipp Moritz, Robert Nishihara, Alexey Tumanov, Ion Stoica
Fast Thread Migration in a Heterogenous ISA System

Project #10: John Fang, Charles Hong, Max Banister

Solution ResultsProblem

● Heterogenous SoCs are an increasingly popular 
design choice

● SMP kernels aren’t built to run across diverse ISA 
multicore systems

● System designers create custom software 
interfaces per IP block, duplicates effort

Background

A fast and automatic thread migration mechanism 
addresses the heterogeneity of such systems. 

● Only a few general-purpose application cores will 
run Linux

● Firmware migrates threads to corresponding 
accelerator cores when executing extension 
instructions and back to general-purpose cores for 
OS services

● A single program can move across accelerators 
supporting various ISA extensions

Idea: Trap on accelerator-specific custom 
instructions, and use that event to trigger a thread 
migration to an accelerator control processor

● We use the OpenSBI firmware to detect hart 
capabilities and coordinate communication 
between firmware and the kernel

● Minimal changes to Linux to handle scheduling 
tasks on accelerator cores (~100 LOC)

● Application writer may be oblivious to core 
migrations, though intimate knowledge of the 
platform can be used for further optimization

● There is a movement towards using RISC-V as the 
base ISA across all IP’s

● Accelerators with an attached processor are a 
good idea

● Control processors have ISA extensions to control 
the accelerator

● Observation: Having the same base ISA allows a 
thread to start on one processor and migrate to 
another, based on what ISA extension it requires at 
the time

OpenSBI M-mode

Linux S-mode

App U-mode

1

2

3

4

● Time for first migration of a task longer due to 
time to pin physical memory pages

● Migration requires additional data movement of 
saved processor state, so latency scales with how 
much state must be saved
○ Accelerators with a large scratchpad are a bad 

fit for thread migration
● No significant resource contention overhead 

expected (i.e. latency scales linearly with number 
of application processors vying for same 
accelerator)

1: A illegal instruction trap is taken on a custom instruction 

not supported on this hart

2: M-mode software delegates the trap to Linux, which in 

turn makes an SBI call to begin the migration process

3: OpenSBI reads the user’s register state and initiates an 

IPI to the accelerator peripheral core

4: OpenSBI, now on the accelerator core, dequeues the 

requisite execution state and prepares to jump to U-mode 

to run the task


