Fast Thread Migration in a Heterogeneous ISA System

Max Banister
maxbanister@berkeley.edu

John Fang
zitaofang@berkeley.edu

Charles Hong
charleshong@berkeley.edu

University of California, Berkeley = University of California, Berkeley — University of California, Berkeley

ABSTRACT

Heterogenous systems-on-chip (SoCs) are becoming more
popular across different levels of computing. However, the
modularity of extensible ISAs like RISC-V can also cause frag-
mentation and the coexistence of cores in the same system
that support different ISA extensions. Currently, no OS sched-
uler is designed for managing threads on such heterogeneous
systems. Users must use poorly-suited mechanisms to manu-
ally set the cores on which their software should run, hurting
performance and increasing development time. We propose
an automatic thread migration mechanism that schedules
accelerated programs to the appropriate cores in a shared
memory heterogeneous system, adapting system software
to an increasingly common hardware environment. The fast
thread migration system, implemented for SOCs implement-
ing the RISC-V vector extension on only certain cores, speeds
up thread migration over Linux sched_setaffinity() sys-
tem call by 2.1x and eliminates the need of the application to
be developed with awareness of which cores in the system
support specific ISA extensions.

1 INTRODUCTION

Many-core System-on-a-Chips (SoC) designs have prolifer-
ated due to their simplicity of manufacturing and improved
intra-chip communication latencies. Miniaturization in IC
technology has meant that more components of the system
can be added to a single chip, including the CPUs, caches,
NICs, and wireless components. In addition, because of scal-
ing limitations with general-purpose processor cores, de-
signers have used their increasing transistor budget to add
domain-specific hardware accelerators, to efficiently run cer-
tain applications. Such accelerators have greatly enhanced
the performance of tasks such as video encoding and decod-
ing, audio digital signal processing, cryptography, and deep
neural networks. With the possibility of fitting dozens of
such accelerators on a chip, system designers are faced with
the challenge of controlling a diverse set of IP blocks in a
uniform fashion, as to allow firmware, operating system, and
application writers to easily exploit their capabilities. In the
past, attempts at doing so have resulted in ad hoc implemen-
tations and divergent architectures, greatly increasing the
amount of development and verification effort. In this paper,
we explore a greenfield system architecture and software
stack aimed at solving this problem. We leverage existing
research in interprocessor communication, and build on the

RISC-V philosophy of having all cores belonging to the same
base ISA. Such a design, we believe, cuts down on the amount
of repeated work for verification and minimizes the number
of software toolchains one must support.

Tightly-coupled accelerators, which integrate with the
processor’s control logic, or loosely-coupled accelerators,
are two models of accelerators that build on the traditional
scalar unit and extend it with additional functionality. Such
designs are advantageous because they allow tight feedback
between the accelerator and the scalar unit for computa-
tions that may need to alternate between the two, allowing
data to reside in a shared SRAM or introducing intermixing
of control flow with data-parallel operations. While simple
devices may be programmed by foreign processor MMIO,
more complex operations will inevitably require the con-
trol processor to run bespoke logic, and attaching a scalar
core is a simple alternative to a complicated state machine
or microcoded implementation. For example, a deep neural
network engine might feature acceleration for common op-
erations such as matrix multiplication and 2D convolutions,
but a host processor might be necessary for layer-wise sched-
uling and performing operations that weren’t anticipated
prior to chip fabrication. As such, software will now be run-
ning on accelerator cores, necessitating a communication
mechanism to the general purpose application processors
that may need to retrieve data or initiate a work job. We
do not examine the challenges involved in facilitating this
communication at a hardware level, such as with a network-
on-a-chip architecture, but instead look at software’s view
of such accelerators.

These accelerator control processors often have custom
instructions, separate from the base ISA, to enable opera-
tions particular to the application domain they are attempt-
ing to accelerate. These instructions may be long-latency,
CISC-style instructions that deviate from the simpler in-
structions they are nested between. This enables the type of
fine-grained acceleration that tightly-coupled accelerators
are targeting. Other software models may exist to enable ac-
celerator support, such as at the framework or the OS level,
but here we focus on ISA-level support, upon which higher
level abstractions can be built if desired. Adding OS support
for accelerator functions, such as with a device driver, incurs
significant overhead because of various user-kernel memory
copies and system call overhead. As such, it is desirable that a

user application be able to reach out and control an accelera-
tor, as if it were just another functional unit on the processor
it is running on. In our model, an application can leverage
platform firmware, with little modification to the OS, and
run part or all of a thread on an accelerator. The operating
system only needs to know about the migration insomuch
as it needs to put the process to sleep during accelerator
execution. It is expected that a program may need to switch
between the accelerator host processor and the application
processor multiple times during its lifetime - although for
coarsely schedulable timeslices, to amortize the overhead of
migrating CPUs.

This design is also useful for solving the issue of fragmen-
tation in the RISC-V ecosystem. Since RISC-V is designed to
be extensible, vendors may add proprietary features to the
ISA in order to support accelerator execution. In addition,
there are over 20 ratified “well-known” extensions already
in use, and building software for the power set of all of these
poses a challenge. In addition, system designers have to de-
cide whether to have homogenous ISA support, potentially
bloating each processor’s decode unit and datapath, or have
piecemeal ISA extensions on each core, complicating build
systems and operating system scheduling. We propose a
mechanism for thread migration whereby the second option
becomes more feasible, as knowledge of each core’s innate
capabilities is deferred to the platform firmware, which by
necessity is customized for each SoC anyway. In this way,
the operating system itself can have a view of a homogenous
set of CPUs upon which to schedule, but there are hidden,
special purpose cores for use only by platform firmware. Our
system is unique in that it requires no special system calls or
linked libraries in order to make use of an accelerator device
on the SoC. An application writer can merely use the custom
instructions expected by the accelerator, and a combination
of firmware and OS kernel will transparently handle migrat-
ing the running thread across hardware threads. It does so by
recognizing that, if both the application cores and the accel-
erator processor support the same base ISA, such as RV64l, a
thread can start its life on one core, and migrate to the other
depending on characteristics of the program, such as which
instructions it’s executing or whether it needs to perform
I/0O. It starts on an application core, and upon detecting an
illegal instruction that matches the accelerator’s supported
opcodes, it initiates a migration to the other processor, whose
datapath is equipped to handle such instructions. This allows
the application to be extremely flexible in how it is written,
although performance is more of a blackbox, which is why
library authors should make use of knowledge of this be-
havior in order to prevent migration thrashing and achieve
more predictable results.

The remainder of this paper is organized as follows: In
Section 2 we discuss the accelerator software support ecosys-
tem and prior system migration work. In Section 3 we give
an overview of the RISC-V system software environment
and the steps we take to implement fast, automatic thread
migration. In Section 4 we discuss the benchmarks used and
the metrics of success for fast thread migration. In Section 5
we evaluate the effectiveness and performance of fast thread
migration against baseline Linux. In Section 6 we discuss
future work and conclude in Section 7.

2 RELATED WORK
2.1 Hardware Accelerator Control

Hardware accelerators are specialized hardware for some
particular algorithm that has far better performance than
general purpose processor. [8] has a detailed description of
the taxonomy of accelerator communication type. Depend-
ing on the method to control the accelerators, we can form
a spectrum of accelerator classification, from direct mem-
ory access engine (DMA) to tightly coupled co-processor
like FPU. DMA type accelerators can also be further divided
based on the location of DMA engine (as a part of the ac-
celerator or located somewhere else on the bus), although
they are pratically the same for the purpose of accelerator
programming.

The most naive ways to control them are to treat accelera-
tors as IO devices and access them through memory instruc-
tions, or to treat them as a part of the application processor
and issue specialized instructions to them. However, the
former method is slow and inflexible due to the memory
access latency and instruction format, and the latter is dif-
ficult to implement when the number of accelerators grow.
For slow DMA accelerator that doesn’t requires much in-
teraction with the core, control through memory address
is sufficient even with a large number of such accelerators.
Standalone GPUs, for example, often exist as a hardware
accelerator for graphic rendering connected through PCle
to the core. They are far away from the core, and they can
execute code on their own, therefore we can get acceptable
performance with the current communication method. But,
it is not ideal for computational intensive accelerator with
fine-grained control, which is what we intend to tackle.

As of today, most hardware accelerator built in RISC-V
system have a small control core that can execute some
control code and issue specialized instructions to the spe-
cialized hardware part. Rocket core is a popular open-source
control core, which come with a standard accelerator inter-
face Rocket Custom Co-processor (RoCC) [3]. Some exam-
ples of accelerators using this platform include Gemmini
[9], Hwacha [11], and SHA3 accelerator [12]. SHAS3 is the
accelerator for cryptographic algorithm, and it is a typical

DMA-style accelerator that perform computation on the data
in the built-in scratchpad and use an DMA engine to transfer
data from and to the memory. Hwacha, on the contrary, is a
non-standard vector unit that predates the RISC-V standard
extension, therefore it requires much more interaction with
the general cores despite using the same interface as SHA3.
Gemmini is a neural network accelerator with a big systolic
array for matrix multiplication and some nonlinear opera-
tions. This accelerator is located between the two extremes
represented by SHA3 and Hwacha on the DMA-tightly cou-
pled accelerator spectrum. There are also other accelerators
like NVDLA [1], an open-source neural network accelerator
developed by NVIDIA that has been integrated with RISC-V
and the RoCC interface in the past [7].

There are some prior works regarding the control of ac-
celerators. Among them, OpenAMP [2] is the most popular
framework to control systems with heterogeneous cores.
Such system is prevalent in today’s system-on-chips which
comprise of central application core, accelerators and 10
cores, which OpenAMP intends to address according to their
introduction. This frameworks allows different cores to run
different OS, and it treats them as remote cores which can be
controlled through RPC mechanism. Essentially, OpenAMP
is a collection of inter-processor communication tools, and it
requires special programming model in which the program-
mer must know the differences between cores and the system
configuration. Our goal is to allow programmers to create ap-
plication for large-scale networks of cores with their familiar
programming models, and OpenAMP doesn’t satisfy this re-
quirement. OpenAMP is designed to support communication
between cores with completely different ISA, like ARM and
x86; however, we assume that all cores in the system share
the same base ISA, which lead to a more efficient accelerator
control mechanism.

2.2 Type-II Hypervisor

In this project, we intend to take over the management of
some hardware resources from the commodity OS that does
not recognize the heterogeneity of the hardware without ex-
tensive modification. Such design is very similar to Type-II
hypervisor, which runs on bare-metal machines and control
the access to hardware resources. Disco [5] is the earliest
implementation of such system. It was originally designed to
address the memory access problem of regular OS, which as-
sume that all memory accesses have the same cost, in NUMA
system. It virtualizes all IO devices as well as the physical
CPU and multiplex them between each virtual machines,
and it applies second-level address translation for virtual
memory so that every OS see a continuous "physical” mem-
ory space. This also allows the hypervisor to move memory
pages closer to the core to improve NUMA performance. At

this point, the hardware platform we are assuming is not
large enough to have significant effects on memory access
latency differences, but we predict that we will eventually
need to tackle the NUMA problem in our implementation
for larger SoC or distributed systems.

Xen [4] is another type-II hypervisor with support of par-
avirtualization, which also exposes raw physical devices to
virtual machines for higher performance. If the OS knows
what kind of devices they are working with, they can apply
proper optimization to improve the performance. This im-
provement comes with a price, though; we need to modify
OS kernels so that they can recognize the devices besides
the code changes to support Xen’s page table translation.
There are also some other commercial implementation of
Type-II hypervisor, like VMWare’s ESXi server [?], although
obviously they cannot be easily used for research purposed
without their assistance.

2.3 VM Live Migration

VM live migration is a technique to move the OS between
different machines while allowing them to continue to serve
incoming request except for a very short down time [6]. This
technique can be used in the same data center for load bal-
ancing and removing machines for maintenance. It can also
facilitate edge computing by moving VM with the application
from a mobile device to a computationally more powerful
machine, as in the case of Kimberly. Essentially, the idea of
VM migration is to move the tasks to the machine that can
best serve it. We adopt this idea for our project, although we
are only moving the tasks, or threads, that need to be moved.
The original paper iteratively copies dirty memory pages
to the new machines while the VM is still running, and it
will stop the VM when the hypervisor determine there is
no additional benefit to continue copying, then move the
remaining pages over. Currently, we are targeting a shared
memory environment, therefore explicit memory copying
is not required. However, as we move into distributed or
NUMA system, we may need to introduce this function to
reduce the down time when the thread is being migrated.

3 IMPLEMENTATION

Our implementation of the proposed thread migration tech-
nique targets an SoC running Linux on heterogeneous RISC-
V cores. The Linux and OpenSBI modifications made for this
work are viewable on Github ! 2.

!Linux: https://github.com/zitaofang/linux (on the migrate branch)
20penSBI: https://github.com/MaxBanister/opensbi- hetero (on the master
branch)

https://github.com/zitaofang/linux
https://github.com/MaxBanister/opensbi-hetero

3.1 The RISC-V System Software
Environment

RISC-V has four privileged levels: user, supervisor, hyper-
visor, and machine [13]. Machine level is the level with the
highest privilege and normally only reserved for a system’s
firmware. Hypervisor is the second level, primarily used by
virtual machine hypervisors (both type-I and type-II). Super-
visor mode is the privilege level where the most operating
system code runs, and user mode is where user programs
run in.

We choose not to implement this feature in the OS for two
reasons:

(1) Thread migration in the OS kernel requires one to
modify the scheduler, and most OS schedulers are cou-
pled with the rest of the kernel to a high degree. An
intrusive change to the OS scheduler leads to bugs and
is not friendly to kernel developers.

(2) We would need to implement thread migration com-
pletely in every OS kernel we intend to support, which
adds unnecessary complexity to our project. A small
code footprint facilitates porting greatly.

Therefore, we opted to implement this feature underneath
the OS level, either in H-level or M-level, with minimal glue
code in the OS kernel.

At the point of writing, the RISC-V hypervisor extension
has only just been approved. Since there is no hardware
implementation that supports the ratified version of the spec,
we choose to implement the thread migration function in
RISC-V’s platform firmware, OpenSBL

To create a system for rapid thread migration between
a general purpose core and an accelerator processor, we
leverage OpenSBIL, a RISC-V based runtime environment with
buildable platform firmware. It serves the role of a second-
stage bootloader, which is adequate for our purposes. We
do not worry about an OS loader, because all of our tests
take place in simulation, and the Linux kernel image can be
pre-loaded into RAM. A platform-specific first stage loader
that performs hardware initialization is also not necessary in
a simulation environment. OpenSBI runs in machine mode
(M mode), which is the highest privilege level in the RISC-V
architecture. As such, it is the first entry point for exceptions,
such as illegal instruction traps, barring delegation to a lower
privilege mode. One of the purposes of the SBI runtime is to
emulate unsupported instructions, so it is natural to use it
to run foreign instructions by migrating the thread to a core
that supports them. We also modify Linux as an example of
how easily transparent accelerator thread migration can be
supported by the operating system. The changes to Linux
consist primarily of putting the waiting thread to sleep, and
communicating with M-mode software through SBI calls.

3.2 Migration Flow

OpenSBI M mode
4 1
OK 1¢
@ Linux S mode
App U mode

Figure 1: Migration Flow to the Accelerator

OpenSBI M mode
[©
@ Linux S mode
)
I App Y | Umode

Figure 2: Migration Flow Back to Linux

In order to initiate a cross-hart thread migration, a thread
needs only use an accelerator specific custom instruction
(knowledge that a migration will occur may not be known at
compile time), which will cause a privilege mode escalation
to OpenSBI (1) in order to service an illegal instruction trap.
The illegal instruction will be unrecognized by OpenSBI, and
redirected to Linux (2) to (presumably) crash the program.
This is still part of the normal illegal instruction trap flow.
In Linux, instead of sending SIGILL to the process, the trap
handler will decode the instruction and recognize that the
opcode matches a pattern known to belong to a certain class
of accelerator. It will then make an SBI environment call (3),
to initiate the migration. Before leaving the kernel, it will
put the current thread on a wait queue, with a condition
to wake up that will be set upon completion. There are a
few essential elements of the execution context that must be
communicated in order to restart the thread on a different
hart:

(1) Memory pages - We assume a shared memory SoC.

Our demonstration relies on the fact that both the
accelerator hart and the application hart have the same

address map, although this is not necessary for the
system to work.

(2) Page table mappings - The address of the root page
table (the satp register in RISC-V) is passed as an argu-
ment with the SBI call. Both processors must support
the same Sv39 MMU with 3 levels of page table.

(3) Scalar registers - The architectural registers will be
saved on the kernel stack upon taking an exception.
Even with Meltdown mitigations in place, this part of
the kernel’s virtual address space is shared with the
user, so it can be conveniently accessed alongside user
memory.

(4) Accelerator state - This is state specific to the acceler-
ator. Different accelerators may have different types
and sizes of state, ranging from special registers, such
as with a vector unit, or entire local scratchpads for in-
termediate computations. This memory is saved along-
side the scalar registers on the kernel stack and passed
to the accelerator during migration.

After making the SBI call, OpenSBI will start executing.
It will collect the architectural register state from a pointer,
passed as an argument, which points to the the kernel stack

where the user registers are stored, and putitin a task_context

structure. It will also record which application core inter-
rupted it. This structure will then be passed as a message
to the accelerator core. The message passing structure is
abstracted away to allow for different hardware communica-
tion mechanisms. We use shared memory and interprocessor
interrupts (IPIs) to achieve it in our simulator. We assume
that the accelerator and the application core are part of the
same cluster, and can thus send and receive IPIs to and from
each other. Other SoCs may pass messages differently, such
as through the use of hardware mailboxes. For this reason,
the specific message queue implementation is abstracted
away to allow for easy adaption to other hardware. For our
implementation, we use software FIFOs to pass messages,
and IPIs to indicate their arrival. Once the task_context
structure is enqueued in the FIFO, the accelerator hart is
interrupted by an IPI. OpenSBI running on the accelerator
hart will dequeue this task_context and prepare to run it
(4). OpenSBI uses a trick to run the new program, in which
it overrides its return trap registers, so that when it returns
to its pre-trap execution state, it runs the migrated thread.
Execution finishes when the running thread encounters a
synchronous exception, either because of a system call (usu-
ally to perform I/O), or because of a page fault. At this point,
migration back to the application core occurs.

Migration back follows much in the same vein as migra-
tion to. Again, the architectural state is captured upon taking
the exception (5) and passed as a message back to the Linux-
running core that initiated the request. The interprocessor

interrupt is taken in OpenSBI, now on the application proces-
sor, which writes a special exception cause value, so Linux
knows what to do with this interrupt. It will also override
the saved registers on the kernel stack, using the pointer that
was saved before, with the new values of the architectural
registers. Then, the exception is redirected to Linux (6), by
jumping to its exception entry address. Linux will switch on
the exception cause and see that a thread stopped running
on the accelerator and should be restarted on the general
purpose CPU. Additionally, we pass in the thread ID of the
awakened task in the stval register, which is used in RISC-V
to provide additional trap information. It can use the thread
ID to wake up the thread on the wait queue, upon which it
will continue running normally under a supervisor environ-
ment (7). The accelerator core, if there are no more tasks to
run in its queue, jumps to an idle loop.

3.3 Page Fault Handling

One important implementation detail that deserves its own
discussion is the handling of page faults. Although a pro-
grammer can avoid synchronous exceptions that trigger a
migration back by e.g. not making any system calls, they can-
not predict when a page fault will be taken, since the valid
bits in a page table are soft state, and the operating system is
free to page in and out memory as it sees fit. We have found
that empirically, programs will have a period of frequent
page faults as their working set size increases, and a period
of relative tranquility as it works on that memory. Thus, for
compute-heavy programs, migrations should not dominate
the overall cycles of a program, though they are important
to keep track of when analyzing performance. Since page
faults are a common occurrence, it may be useful to have a
separate message format to pass to Linux in order to allocate
a page/check for an out of bounds access. We currently han-
dle page faults uniformly with other types of exceptions, i.e.,
we restart the thread running under the supervisor, where
the page fault can be serviced. This contributed to the ease
of implementation, but in the future it may be useful to in-
troduce a fast path for physical page allocations. Another
solution might be having a shared global memory pool that
is shared between different system software, although we do
not explore this in this paper. The presence of thrashing in
the face of frequent page faults, wherein a tight interleaving
of accelerator ops and allocating new memory occur, can be
ameliorated by using large TLB entries, although at the ex-
pense of greater internal fragmentation. It is also necessary
that while the thread is executing on the accelerator hart
that Linux not swap out or move the thread’s memory. That
is, the memory should remain pinned to physical RAM. This
is possible to do in Linux natively by invoking the syscall
mlockall with the MCL_FUTURE option. We experienced this

Scalar state

Exception PC epc
Page Table Root Pointer satp
Scalar register x1-x31
Vector state
Vector start vstart
Vector type vtype
Vector length vl

Vector Control and Status Register | vesr
Vector registers v0-v31

Table 1: Execution state captured at migration

syscall having a one time cost of 100,000’s of cycles, which is
paid at the start of a program as all the pages are faulted in.
For applications in which this is an unacceptable delay, we
came up with a mechanism by which a process can optimisti-
cally defer locking in the common case that pages are not
evicted but still guarantee that that its pages are not moved.
When Linux invalidates a page table entry, it performs a TLB
shootdown to force every hart in the system to flush that
entry from its TLB, so as to not have stale data. Linux makes
an environment call into OpenSBI to do this. In OpenSBI, the
shootdown is performed by sending a flush request to each
hart via an IPI and waiting for them to acknowledge. If a
flush request is received by the accelerator hart while an ac-
celerated thread is running and the address space identifiers
(ASIDs) match, it can stop the thread from running at that
point in time and begin the migration back to Linux. This
way, before Linux swaps out a page, the accelerator thread
stops using the contents of that memory, and correctness is
preserved.

3.4 RISC-V Vector Extension

For our implementation, we chose the RISC-V vector exten-
sion to illustrate how accelerator ops may work in conjunc-
tion with a regular program. Vector machines have several
properties of tightly-coupled accelerators that we believe
well fit the type of application we are targeting. They exhibit
fine-grain data parallelism, and are intermixed with scalar
instructions for things like pointer bumps, branches, and
function calls/returns. The vector extension also has a rich,
expressive ISA that eludes a simple MMIO control pattern. It
is a reconfigurable architecture, meaning that it may change
the data length, data types, or a number of other datapath
control settings at runtime. It is hard to specify every type of
computation one may want to perform with vectors, which
is why our system does not abstract away the ISA and gives
the programmer full control at the assembly level. The rele-
vant state that must be saved and restored on a migration

are the configuration registers vstart, vtype, vl, and vcsr, in
addition to the vector registers themselves.

3.5 Linux Kernel Modifications

We modified the Linux kernel so that the threads are put
to sleep when they are executing on the accelerator cores.
This allows the Linux kernel to re-allot the application core
to other thread. Due to the restriction on available memory
in OpenSBI, we have to create a queue on the Linux side,
implemented as a wait queue of a semaphore, to store the
threads waiting to be migrated when the OpenSBI queue is
full.

Essentially, the process can be understood as forking a
bare-metal thread on the accelerator core from the OS thread,
and the bare-metal thread will join the OS thread once it
finishes running on the accelerator cores. The thread state
of the sleeping OS thread will be replaced by the bare-metal
thread upon joining.

Currently, the outbound migration is triggered by an il-
legal instruction exception. We modify the trap handler to
detect whether the offending instruction is possibly part of
the custom extension available on other cores in the system
but not on this core. If it is not the case, we fall back to the
regular illegal instruction handler, which will terminate the
program normally. Otherwise, we initiate the migration pro-
cess and put them in the OS outbound queue. If the OpenSBI
queue is not full (whose size is represented by a semaphore
in Linux kernel), we will pin all memory pages used by the
cores and perform an SBI call (which is similar to a syscall
but evaluates our permission from the S mode to M mode).
This call will pass the necessary info to recover execution to
OpenSBI, like pointer to the thread control block. After the
SBI call returns, the thread will enter a wait queue to wait
for the incoming migration flag of the thread coming back.
The flag is actually a global variable marking the thread ID
of the returning thread, and the thread will be checking if
the global variable matches its thread ID during a wake-up
check.

Although the accelerator core will use an IPI to notify
the main/application core that the thread is coming back,
OpenSBI will intercept and handle the interrupt. Instead, we
will receive a platform-specific interrupt from OpenSBI once
it finishes writing the state back to the data structure of our
threads. The only thing that Linux kernel needs to do is to
set the global variable above to the incoming thread and
increment the queue length semaphore, then wake up the
thread.

As this is an RISC-V specific feature, we restrict our kernel
modification to the RISC-V architecture section.

4 METHODOLOGY
4.1 Spike

We benchmark our fast thread migration implementation
using Spike, the RISC-V ISA-level simulator. Spike is not cy-
cle accurate to hardware implementations of RISC-V, but is
capable of accurately counting instructions during events
relevant to thread migration. We decided to use Spike for two
main reasons. First, Spike allows us to quickly test our system
software modifications within the order of seconds, much
faster than if we were to use a cycle-accurate simulator like
FireSim [10]. It is also flexible enough to be configured with
a variable number of RISC-V cores, each with its own set of
extensions. A real RISC-V Second, there is no currently avail-
able RTL implementation of a RISC-V heterogeneous ISA
SoC. There is one under development in Berkeley’s ADEPT
computer architecture lab, but it is not mature enough to
boot Linux, which is a prerequisite for running fast thread
migration.

4.2 Benchmarks

We examine the behavior of fast thread migration under a
set of various micro- and macro-benchmarks. The micro-
benchmarks used for this project, which mainly tested the
functionality and performance of single migrations, are ex-
panded on in Section 5. One main macro-benchmark used
in this work is a RISC-V vector program called dgemm, short
for double-precision, general matrix-matrix multiplication.
We use an assembly-level implementation of dgemm because
compilers for the RISC-V vector extension are still at an early
stage. dgemm is a typical workload that would be accelerated
by a RISC-V core supporting the vector extension, and is
a good stress test of the functionality and correctness of
fast thread migration. Though we would have liked to have
tested fast thread migration on larger workloads such as neu-
ral networks, current implementations of neural networks
for the RISC-V vector extension are experimental and were
not able to be compiled within the time constraints of this
project. We leave this level of testing as future work.

End-to-end performance, as well as progress through the
dgemm benchmark was measured by instrumenting the code
with reads of the cycle RISC-V Control and Status Regis-
ter, which is available to read in the user space. The bench-
marking code used for this project is publicly viewable on
Github 3.

4.3 Baseline and Metrics of Success

When programs such as dgemm run in the fast thread migra-
tion environment, they automatically migrate to the accel-
erator core when vector instructions are encountered, and

3https://github.com/charleshong3/262-proj-benchmarks

= - N, B N TR CREN

Listing 1: Example of Linux core pinning baseline.
Code below is rendered unnecessary by fast thread
migration.

#include <sched.h>

int main() {
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(1, &mask); // Assumes CPU 1 is accelerator core
sched_setaffinity(0, sizeof(mask), &mask);

back to the application core exposed to Linux when a Linux
kernel event such as a syscall or page fault occurs. How-
ever, in an unmodified RISC-V Linux system environment
under the same hardware architecture, the program would
simply fail to execute on the application core. Therefore, the
baseline performance we compare to is one where the Linux
syscall sched_setaffinity() has been manually added to
the program, so that accelerated code executes on the correct
core as necessary. An example is shown in Listing 1. This
lends itself to one of the metrics of success of this project,
the burden removed from the application developer.

The second main metric of success for this project is per-
formance. Since fast thread migration may necessitate some
migration not needed in the baseline case, we do not expect
fast thread migration to significantly outperform our base-
line. However, we do expect competitive performance as
migration cost is low, and not running Linux on the acceler-
ator may actually provide a performance benefit since other
kernel-level tasks cannot be scheduled on the accelerator
core and interleaved with the benchmark program.

5 EVALUATION
5.1 User Experience

As discussed in Section 4.3, one of the main goals of this
project is to reduce the burden on application developers
targeting heterogeneous ISA systems. Listing 1 shows the
process to pin a program to a certain core exposed to Linux.
Though the number of lines of code is small, the baseline re-
quires the program to be aware of which core has the correct
extension (in the example, core 1). If the program is pinned to
the wrong core, the Linux scheduler will be unable to resolve
this issue and the program will crash. Additionally, in a real
world scenario like a datacenter, where many cores may be
distributed across different sockets and servers, managing
these variables becomes more and more complex. In fast

https://github.com/charleshong3/262-proj-benchmarks

thread migration, only the platform firmware must be aware
of which cores support which ISA extensions.

5.2 Individual Migration Performance

We first evaluate the performance on one individual mi-
gration across a core, to verify that our implementation
functions and will not add excessive performance cost to
the program. In order to measure individual migration per-
formance, we run a simple program that runs one vector
instruction, causing the firmware to migrate the program
to the accelerator core, then the syscall getpid(), causing
a migration back to the application core. We migrate back
and forth between the application core and the accelerator
core in order to get accurate cycle count measurements on
taken on the same core, since in Spike, each core has its own
cycle counter that constantly increments. In the baseline,
the program is first pinned to the application core to ensure
that migration occurs. A cycle measurement is taken, and
the program is pinned to the accelerator core, then back to
the application core. As shown in Figure 3, the results of
this measurement show that fast thread migration is faster
than core pinning with sched_setaffinity() in Linux, by
a magnitude of about 2.1x.

Thread Migration Latency

20000
15000

10000

Cycles

5000

0

B Fast thread migration [Linux core pinning

Figure 3: Latency of one thread migration under fast
thread migration, and under the baseline of Linux’s
sched_setaffinity().

5.3 Scaling

Another important consideration of any system software
implementation is scaling to parallel execution. Since we
implement fast thread migration using a simple first-in-first-
out queue for multiple programs that attempt to migrate to
the same accelerator core, when multiple programs content
for access to the same accelerator core, we do not expect
any significant increase in runtime beyond the sum of the
runtimes of each program, and the migration time. In order

Scaling Across Application Cores (One Accelerator Core)

30000000

20000000

Cycles

10000000

1 2 3 4 5 6

Application Cores

Figure 4: Runtime of the benchmark program on a
variable number of application cores. This benchmark
shows that there is no additional cost associated with
multiple programs attempting to access the same ac-
celerator.

to confirm this, we benchmark fast thread migration with a
program that spawns one UNIX pthread for each available
application cores. Each pthread runs for a short duration
on the same accelerator core, and we vary the number of
application cores in the system (and therefore the number
of parallel program instances spawned. Figure 4 shows the
results of this benchmark. The program performs mostly as
expected, with the cycle count of the whole program increas-
ing mostly linearly. We are able to consistently reproduce a
slowdown at 2 application cores, but are unable to identify
the root cause of this unexpected performance issue due to
the time constraint of the project. Nonetheless, this bench-
mark achieves its goal of showing that the runtime of the
program does not scale worse than linearly with the number
of parallel processes vying for the same accelerator core. In
fact, the program scales better than linearly with a small
number of parallel processes, likely due to program starting
and process spawning overhead.

5.4 End-to-End Performance

It is also important to examine the performance of fast thread
migration on macro-benchmarks that show the effectiveness
of the system in real-world applications. As discussed in Sec-
tion 4.2, the main macro-benchmark we use to evaluate fast
thread migration is dgemm, a double-precision general matrix
multiplication. As discussed on Section 4.2, we measure the
progress of the program by instrumenting dgemm with reads
of the cycle RISC-V Control and Status Register. We estimate
progress through the program by calculating the proportion

43x43x43 dgemm

Fast thread migration (with syscalls)
Linux core pinning (with syscalls)

® Fast thread migration
® Linux core pinning

125000

100000

75000 /
50000 /.//:

0 -
0.00% 25.00% 50.00% 75.00%

Cycles

25000

Progress

Figure 5: Runtime of a 43 by 43 by 43 matrix multiply
in each of the test environments. dgemm is also run with
14 syscalls interspersed throughout the program, in
order to simulate the usage of kernel mode program
calls like printf.

of multiply-accumulate operations that have occurred so far,
relative to the total number of multiply-accumulate opera-
tions in the whole program.

Because our dgemm implementation does not have any ad-
ditional system calls inside the program, and causes only a
relatively small number of page faults, we find that dgemm
actually runs faster with fast thread migration than it does in
the baseline, by about 27%, or 20,000 cycles, as shown in Fig-
ure 5. Since the startup cost of both programs (initial thread
migration, Linux core pinning) is within a few thousand cy-
cles, we suspect that this difference is caused by additional
overhead imposed by Linux, which in the baseline case is
running on both the application core and the accelerator
core. This is evidenced by the fact that although dgemm pro-
ceeds at a similar rate most of the time in both the fast thread
migration and baseline cases, the number of cycles needed to
proceed to the next cycle count measurement tends to jump
a couple times throughout the program, likely when another
programs is being scheduled by Linux on the accelerator
core.

Because our base dgemm implementation does not have
trigger many thread migrations, we decided to simulate the
effect of the user adding system calls like printf () by inter-
spersing calls to the getpid() syscall throughout the pro-
gram. Specifically, this system call is made 14 times through-
out the program. When these system calls are added to the
program, dgemm predictably begins to perform worse in the
fast thread migration environment than in the baseline envi-
ronment. As shown in Figure 5, dgemm with fast thread mi-
gration has a runtime of about 34%, or 30,000 cycles longer

Average cost of getpid() syscall
Baseline Linux 988 cycles
Fast thread migration | 4524 cycles

Table 2: System call cost incurred in baseline and fast
thread migration environments. Additional cost of
syscall in fast thread migration: 3536 cycles.

than it does in the baseline case. This benchmark also al-
lows us to estimate system call cost in fast thread migration.
As shown in Table 2, we measure the average cost of the
getpid() system call as 988 cycles on average in the baseline,
and 4524 cycles on average when a system call run from the
accelerator core causes a thread migration in the fast thread
migration environment. This means that on average, each
migration from the accelerator core to the application core,
then back (since dgemm continues to run vector instructions)
incurs a cost of 3536 cycles. Interestingly, this is less than the
originally measured cost of a single thread migration, which
shows that it is likely that there is some additional overhead
associated with the first thread migration that occurs in a
program.

A last macro-benchmark that we carried out on the fast
thread migration system was a version of dgemm, repeated
1000 times. This benchmark verifies the functionality of and
demonstrates the performance of a program running for an
extended period of time under fast thread migration. The
results of this benchmark are shown in Figure 6. We see that
the program has an almost identical runtime under both fast
thread migration and the baseline, further showing that there
is no performance cost to fast thread migration unless there
are a significant number of additional system calls made by
the program.

6 FUTURE WORK

Due to the time constraint, we only implemented the basic
function for this system. We are planning the following in
the future:

6.1 Hypervisor Implementation

The hypervisor extension for RISC-V was formally ratified
two weeks before this paper is written. At this time, there is
no hardware platform that implement this instructions. Once
our targeted hardware platform is updated to support hyper-
visor, we will move the implementation from the firmware
to the hypervisor level so that it can be portable without
modifying the code.

1000 * 43x43x43 dgemm
® Fast thread migration ™ Linux core pinning

40000000

30000000

20000000

Cycles

10000000

0 250 500 750 1000

of dgemms

Figure 6: Runtime of the same dgemm program above,
repeated 1000 times.

6.2 Migration Hint

Currently, we initiate a migration when there is an instruc-
tion the current core cannot handle. This may cause long la-
tency issue after the thread finishing an accelerator code seg-
ment or IO segment and attempt to execute latency-critical
codes not supported by the current core. Also, if some in-
tensive general-purpose computation immediately follows
the accelerator code, leaving the thread on the accelerator
control core harm our performance since accelerator control
cores are normally small in-order core with low performance.
By introducing hint call, we can not only avoid the unwanted
latency spike in some code segment but also encourage pro-
grammers to optimize their code with the thread migration
mechanism in mind, like avoiding interleaving IO and ac-
celerator function calls. We don’t intend to make the call
mandatory but allows the legacy program to also run on the
thread migration system without code change, though with
some potential performance degrade. Besides, in the case
where memory copying is needed, an early hint can allow
us to employ iterative copying to reduce the thread down
time during migration.

6.3 Distributed System Support

Shared memory space is not a requirement for thread mi-
gration, although it does simplify the implementation and
allow us to obtain initial results quickly. We hope to extend
this mechanism to support migration over network, like in a
data center setting. The only difference in this case is that we
can no longer directly access the memory pages on another
machine, and we can solve this problem in the hypervisor
level by modifying page fault handler to fetch content from
another machine.

6.4 Advanced Scheduling

Our current implementation only use basic FIFO scheduler
when deciding which core to send the task to. We are consid-
ering implementing a more sophisticated scheduler for tasks
in the future. Also, since every accelerator has a control core
that can be used to execute general-purpose tasks, we are
also planning to offload some tasks from the application core
to these accelerator control cores when there is no acceler-
ator tasks, therefore improving the hardware utilization of
the entire system.

7 CONCLUSION

As we approach the end of Moore’s Law, hardware accel-
erators are becoming more important to continue the per-
formance improvement in computer system. The increasing
number of hardware accelerators needed for modern SoCs
presents a unique challenge for designers to control the het-
erogeneous computing resources in such systems. In this
work, we show that it is possible to implement a thread
migration system that automatically delivers a program to
the correct core at runtime, through firmware modifications
and some changes to the Linux kernel. This system adds
little end-to-end performance cost and even implements the
same operation as Linux’s sched_setaffinity() system
call with 2.1x faster performance. With fast thread migration,
programmers and hardware designers can target SoCs with a
control processor per accelerator, allowing higher accelerator
availability, especially in the case of tightly coupled acceler-
ators where the processor must keep issuing instructions to
keep the accelerator busy. With some improvement on the
hint mechanism, we believe that we can create a practical,
high performance accelerator control framework to tackle
the increasingly complex heterogeneous environment.

8 ACKNOWLEDGEMENTS
We would like to thank:

e Jerry Zhao, Albert Ou, and Professor Krste Asanovic
for their assistance in navigating the RISC-V heteroge-
neous ISA system environment.

e Stephanie Wang and Professor John Kubiatowicz for
helping develop this project from an idea to a practical,
scalable implementation.

REFERENCES

[1] 2017. NVIDIA Deep Learning Accelerator (NVDLA). https://nvdla.
org/.

[2] 2021. The OpenAMP Project. https://www.openampproject.org/.

[3] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John
Hauser, Adam Izraelevitz, et al. 2016. The rocket chip generator. EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2016-17 (2016).

https://nvdla.org/
https://nvdla.org/
https://www.openampproject.org/

=

—

—

—

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the art of virtualization. ACM SIGOPS operating systems review 37,
5(2003), 164-177.

Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosen-
blum. 1997. Disco: Running commodity operating systems on scalable
multiprocessors. ACM Transactions on Computer Systems (TOCS) 15, 4
(1997), 412-447.

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live
migration of virtual machines. In Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2.
273-286.

Farzad Farshchi, Qijing Huang, and Heechul Yun. 2019. Integrating
nvidia deep learning accelerator (nvdla) with risc-v soc on firesim.
arXiv preprint arXiv:1903.06495 (2019).

Antoine Fraboulet and Tanguy Risset. 2007. Master interface for on-
chip hardware accelerator burst communications. The Journal of VLSI
Signal Processing Systems for Signal, Image, and Video Technology 49, 1
(2007), 73-85.

[9] Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao,

John Wright, Colin Schmidt, Jerry Zhao, Albert Ou, Max Banister,
et al. 2019. Gemmini: An Agile Systolic Array Generator Enabling
Systematic Evaluations of Deep-Learning Architectures. arXiv preprint
arXiv:1911.09925 (2019).

Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,
Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin
Schmidt, Aditya Chopra, et al. 2018. FireSim: FPGA-accelerated
cycle-exact scale-out system simulation in the public cloud. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 29-42.

Yunsup Lee, Colin Schmidt, Albert Ou, Andrew Waterman, and K
Asanovic. 2015. The Hwacha vector-fetch architecture manual, version
3.8. 1. EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2015-262 (2015).

Colin Schmidt and Adam Izraelevitz. 2015. A Fast Parameterized SHA3
Accelerator. (2015).

Asanovic Krste Waterman, Andrew and John Hauser. 2021. The RISC-
V Instruction Set Manual, Volume II: Privileged Architecture. RISC-V
International (2021).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Hardware Accelerator Control
	2.2 Type-II Hypervisor
	2.3 VM Live Migration

	3 Implementation
	3.1 The RISC-V System Software Environment
	3.2 Migration Flow
	3.3 Page Fault Handling
	3.4 RISC-V Vector Extension
	3.5 Linux Kernel Modifications

	4 Methodology
	4.1 Spike
	4.2 Benchmarks
	4.3 Baseline and Metrics of Success

	5 Evaluation
	5.1 User Experience
	5.2 Individual Migration Performance
	5.3 Scaling
	5.4 End-to-End Performance

	6 Future Work
	6.1 Hypervisor Implementation
	6.2 Migration Hint
	6.3 Distributed System Support
	6.4 Advanced Scheduling

	7 Conclusion
	8 Acknowledgements
	References

